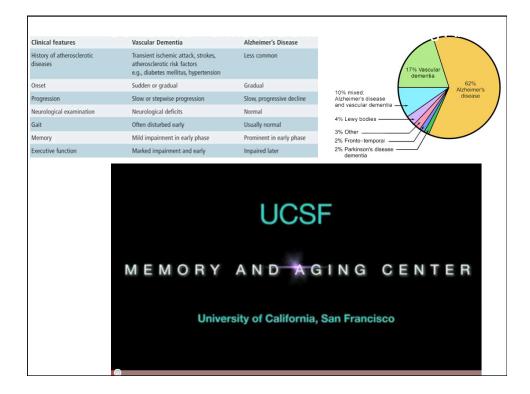
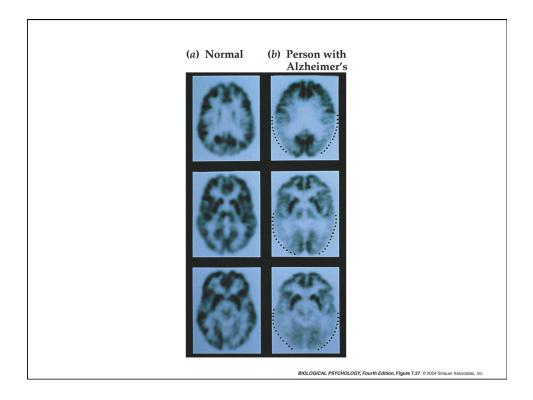
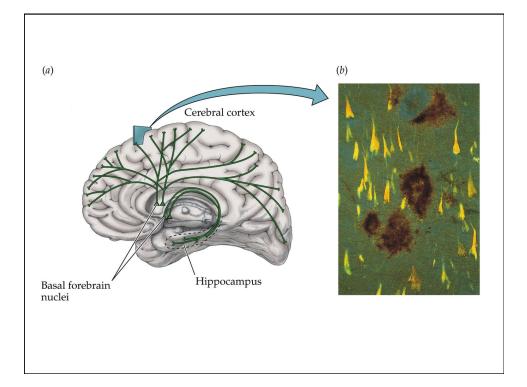
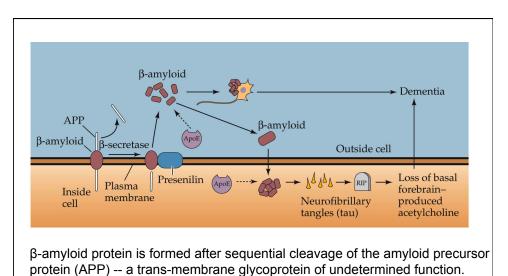
Differences between normal aging-related dementia and Alzheimers

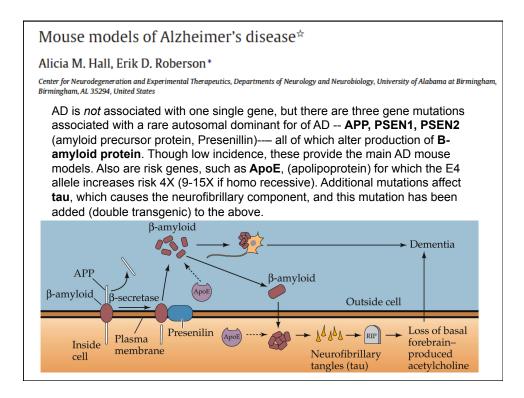

Dementia is a *broad category degenerative disorder* that refers to the loss of memory and other cognitive skills due to changes in the brain caused by age, disease or trauma. The changes can occur gradually or quickly. Memory loss alone is not always a sign of dementia, but memory loss along with other forms of cognitive impairment is an indicator.


Repeatedly asks the same questions Becomes lost or disoriented in familiar places Cannot follow directions Is disoriented as to the date or time of day Doesn't recognize and is confused about familiar people Has difficulty with routine tasks such as paying the billS


Neglects personal safety, hygiene, and nutrition


Alzheimer's Disease is a *sub-type of dementia*, and is a brain disease characterized by lesions that gradually destroy cells in the brain, starting in the *hippocampus*. As neurons die, affected areas *shrink* and become smaller. The areas of the brain that control memory, logical thinking, and personality are the most affected. As grey matter is reduced, *ventricles* in the brain containing CSF become enlarged.

- * Loss of recent memory
- * Problems with language, calculation, abstract thinking, and judgment
- * Depression, anxiety, and personality changes
- * Unpredictable quirks or behaviors
- * Late in the disease, delusions and hallucinations
- * Trouble knowing time, date, or place



Amyloid plaques are composed of a tangle of normally ordered fibrillar aggregates called *amyloid fibers* -- a protein fold shared by other peptides such as prions associated with protein misfolding diseases (e.g., mad cow).

Tg line	Gene/isoform	Mutation	Promoter	Plaques (mo)	Cognitive deficits (mo
hAPP models					
PDAPP	hAPP695<751,770 ^a	Ind	PDGF-B	6-9	6
J20	hAPP695 < 751,770 ^a	Swe, Ind	PDGF-B	6	4
Tg2576	hAPP695	Swe	HamPrP	9	10
APP23	hAPP751	Swe	Thy1	6 CAA: 12	3
TgCRND8	hAPP695	Swe, Ind	HamPrP	3 CAA: 11	3
TASD-41	hAPP751	Swe, Lon	Thy1	3 CAA: 7	6
R1.40	hAPP YAC ^b	Swe	hAPP	14-15	16-17
Aβ Models					
BRI-Aβ42A	BRI-Aβ42	n.a.	MoPrP	3	?
hAPP/PS1 models					
PSAPP	hAPP695	Swe	HamPrP	6	4
(Tg2576xPS1)	PSEN1	M146L	PDGF-B	0	4
APPswe/PS1 Δ E9	m/hAPP695 ^c	Swe	MoPrP	6	6
	PSEN1	$\Delta E9$	MoPrP	0	6
5xFAD	hAPP695	Swe, Lon, Flo	Thy1	2	6
	PSEN1	M146L, L28V	Thy1	2	0
2xKI	m/hAPP ^c	Swe	mAPP	6	9-12
	PSEN1	P264L	mPS1	0	9-12
Models with hTau					
TAPP	hAPP695	Swe	HamPrP	8-15	Motor
(Tg2576xJNPL3)	hTau-4R0 N	P301L	MoPrP	6-15	deficits
	hAPP695	Swe	Thy1		
3xTg	hTau-4R0 N	P301L	Thy1	6	4.5
	PSEN1	M146V	mPS1		
vhtau	hTau PAC ^d	Wild-type	hTau	-	12

"It is important to emphasize that no existing mouse model exhibits all features of AD. The ideal model of AD would develop the full range of clinical and pathological features of AD, including cognitive and behavioral deficits, amyloid plaques and neurofibrillary tangles, gliosis, synapse loss, axonopathy, neuron loss and neurodegeneration. Different mouse lines develop these phenotypes to varying degrees and in different combinations."

Note that, unlike some of the other disorders we have addressed to date, **AD** has a well defined pathological **AND** behavioral profile. Animal models can therefore use either neuropathology and/OR behavior as an outcome measure. This will affect model validity, and could show different results in drug tests.

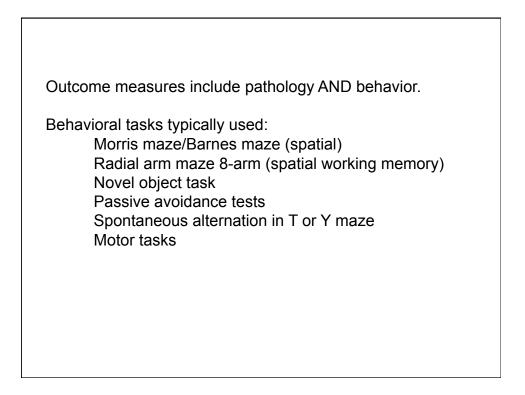
Experimental models of vascular dementia and vascular cognitive impairment: a systematic review

Nadim S. Jiwa, Peter Garrard and Atticus H. Hainsworth

Clinical Neuroscience, Division of Clinical Sciences, St George's University of London, London, UK

Vascular cognitive impairment (VCI) is the next leading cause of dementia after AD.

Table 1 Neuropathological causes of clinical VCI

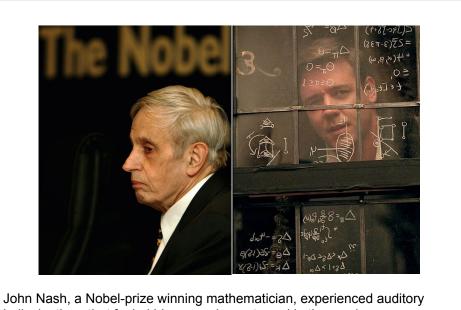

Cerebral small vessel disease: subcortical vascular dementia (including Binswanger's disease, lacunar state) Large vessel disease: multi-infarct dementia (cortical) Strategic infarct (e.g. thalamic) Severe hypoperfusion state Angiopathy (e.g. CAA) Haemorrhage/microbleed Hereditary vasculopathy (e.g. CADASIL)

VCI, vascular cognitive impairment; CAA, cerebral amyloid angiopathy; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy.

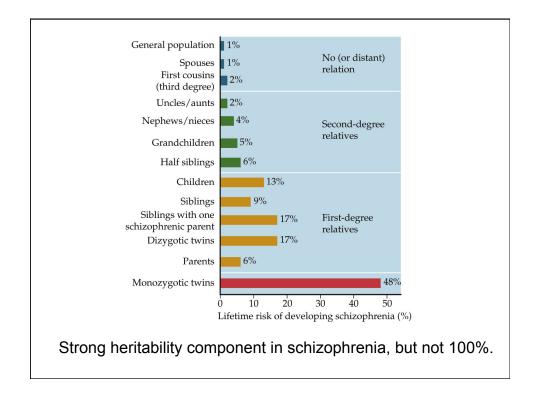
Mechanism and disease state	Cognitive profile	Clinical confounds
Global hypoperfusion – chronic		
Low output cardiac failure	No detailed studies; reduced MMSE found in	Aging; neurodegeneration; focal embolic
Large AVM	chronic cardiac failure	lesions; variable neuroanatomical location
Bilateral carotid stenosis/occlusion		
Chronic anaemia		
Global hypoperfusion – transient		
Cardiac arrest	Impaired long-term verbal and spatial memory;	Variable duration; pre-existing chronic
Carbon monoxide poisoning	normal short-term memory	hypoperfusion
Focal hypoperfusion		
Small AVM	Depends on lesion size and location	Variable neuroanatomical location
Embolic occlusion		
Focal large vessel stenosis	Few detailed studies, mostly based on MMSE	Depression; anatomical variability
Cardiomyopathy	or small test batteries	
Post-perfusion syndrome	Cognitive slowing; impaired attention and	Anatomical variability; possibility of
(post-cardiopulmonary bypass;	working memory	more than one mechanism
multiple emboli)		
Hypercoagulable states	Unknown	Variable clinical expression
Hypertensive		
Primary hypertension	Visuospatial deficits; executive dysfunction	Age; hypercholesterolaemia
Secondary hypertension		Renal failure; diabetes
Vasculopathy		
CADASIL	Cognitive slowing; executive dysfunction	None
CAA	Episodic memory disturbance	Lobar haemorrhage; neurodegeneration
Diabetes mellitus types 1 and 2	Cognitive slowing; executive dysfunction	Variable clinical expression; variable
		neurological involvement

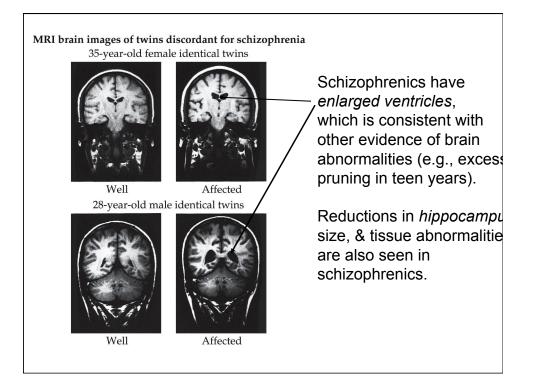
CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy.

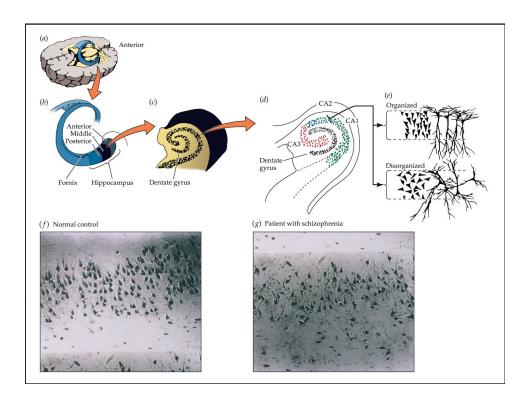
	Sensorimotor or other confounding features	Comition and the
Model	10 atur 05	Cognitive profile
Global hypopertusion - chronic		
Rat BCCAo	No major motor deficit. Some optic nerve damage. No/mild	Impaired working memory and reference memory (MWM, Radial maze; NORT; TMSAT) (Pappas et al. 1996; Ohta
	hippocampal damage (initially)	et al. 1997; Sarti et al. 2002; Storozheva et al. 2008)
Gerbil bilateral carotid stenosis	Normal locomotor activity	Impaired learning ability at 6-12 weeks (PAT) (Kudo et al. 1990, 1993)
Mouse bilateral carotid stenosis	Motor deficits from 3 months	Impaired working memory but not reference memory at
	(rotarod, hotplate, Posholt forced	30 days; both impaired at 5 months (Radial maze;
Mouse UCCAo	swim test). Optic nerve damage None seen (normal locomotion)	Barnes maze) (Shibata <i>et al.</i> 2007; Nishio <i>et al.</i> 2010) Impaired memory in NORT but not TMSAT (Yoshizaki <i>et al.</i> 2008)
Global hypopertusion - transient		
Rat 4-VO	Reduced locomotor activity	Impaired working and reference memory (Radial maze; PAT) (Chung et al. 2002)
Gerbil 2-VO	No gross abnormalities; increased locomotor activity (Andersen and Sams-Dodd 1998)	Reduced working and reference memory (PAT, TMSAT, MWM) (Ward et al. 1995; Andessen and Same-Dodd 1998; Carboni et al. 2008)
Mouse 2-VO	No effect on motor activity (Matsuoka et al. 1995)	Impaired learning (PAT, TMSAT) (Yamamoto at al. 2009)
Focal hypoperfusion		
MCAo (rats, mice) ET-1 injection	Contra-lateral forepaw dysfunction Contra-lateral sensorimotor deficit (Whitehead <i>et al.</i> 2005a; Lecrux <i>et al.</i> 2008)	Prolonged learning and memory deficits. See text Not specifically tested (see Whitehead <i>et al.</i> 2005a,b)
Embolic occlusion		
Injected emboli	Impaired paw use (staircase test)	Impaired working and reference memory (TMSAT, Barnes maze) (Rasmussen et al. 2006; Rapo et al. 2008)
Photo-activated thrombo-emboli	Forelimb dysfunction and incoordination	Impaired learning (MWM) (Alexis et al. 1995; Fukatsu et al. 2002)
Hypertensive		
Hypertensive manikeys	Some retinopathy	Impaired attention, short-term memory and executive function at 12 months (CSST, DRST) (Kemper et al. 2001; Moore et al. 2002; Moss and Jonak 2007)
SHRSP	No major neutological deficit prior to stroke event	Impaired learning and memory (TMSAT, PAT) (Yamaguchi et al. 1994; Togashi et al. 1996; Minami et al. 1997; Kimura et al. 2000; Ueno et al. 2002)
Vesculopathy		2002)
Hypethomocysteine	Normal motor function (rotarod)	Impaire d spatial learning and reference memory but not working memory (MWM, DNMTP) (Bernardo <i>et al.</i> 2007; Troen <i>et al.</i> 2008)
Notch3 transgenic mice	No impairment reported	None reported
MR5-/- mice	Normal locomotor activity/ coordination	Impaired learning (NORT, TMSAT) (Araya et al. 2006; Kitamura et al. 2009)
Diabetic rats/mice	Obesity. No visual or motor dysfunction detected	Impaired learning and memory (MWM, PAT) (Kuhad and Choora 2007: Tsukuda et al. 2007: Takeda et al. 2010)

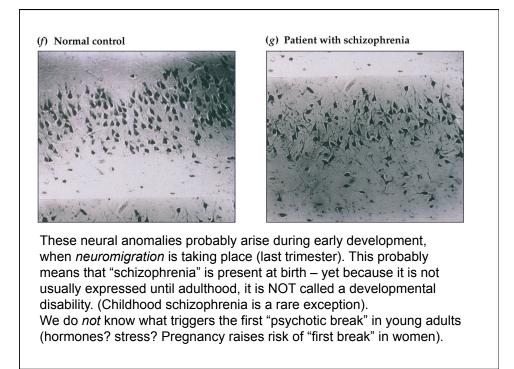


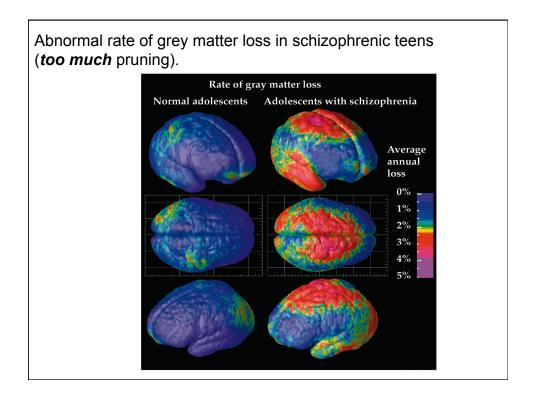
Schizophrenia -- a psychiatric diagnosis that describes a mental illness characterized by distortions in the perception or expression of reality -- most commonly including auditory hallucinations, paranoid or bizarre delusions, or disorganized speech and thinking. Onset of symptoms usually occurs in early 20's for males and early 30's for females, with about 0.4–0.6% of the population affected. Studies suggest that genetics, prenatal factors (stress, teratogens), neurobiology, and environment (e.g., rate is double in urban versus rural environments, probably due to stimulation and stress) are important factors. Pregnancy can trigger symptoms in women.


Diagnosis is based on the patient's self-reported experiences and observed behavior, as well as duration of symptoms. Slightly more common in men.


No laboratory test for schizophrenia exists.


TABLE 16.2 Symptoms of Schizophrenia				
Positive symptoms	Negative symptoms			
Hallucinations, most often auditory Delusions of grandeur, persecution, etc. Disordered thought processes Bizarre behaviors	Social withdrawal Flat affect (blunted emotional responses) Anhedonia (loss of pleasurable feelings) Reduced motivation, poor focus on tasks Alogia (reduced speech output) Catatonia (reduced movement)			




John Nash, a Nobel-prize winning mathematician, experienced auditory hallucinations that fueled his paranoia, portrayed in the movie *"A Beautiful Mind."*

