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Genetic Mouse Models of Depression

Christopher Barkus

Abstract This chapter focuses on the use of genetically modified mice in
investigating the neurcbiology of depressive behaviour. First, the behavioural tests
commonly used as a model of depressive-like behaviour in rodents are described.
These tests include those sensitive o antidepressant treatment such as the forced
swim test and the tail suspension test, as well as other tests that encompass the
wider symptomatology of a depressive episode. A selection of example mutant
mouse lines is then presented to illustrate the use of these tests. As our under-
standing of depression increases, an expanding list of candidate genes is being
investigated using mutant mice. Here, mice relevant to the monoamine and cor-
ticotrophin-releasing factor hypotheses of depression are covered as well as those
relating to the more recent candidate, brain-derived neurotrophic factor. This
selection provides interesting examples of the use of complimentary lines, such as
those that have genetic removal or overexpression, and also opposing behavioural
changes seen following manipulation of closely related genes. Finally, factors such
as the issue of background strain and influence of environmental factors are
reflected upon, before considering what can realistically be expected of a mouse
model of this complex psychiatric disorder.
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1 Introduction

Experimental animal models allow for methods of study into disease and treatment that
would be unethical, impractical or otherwise impossible in humans. By using exper-
imental animals, the molecular underpinnings of disorders and their treatment can be
investigated, but modelling complex psychiatric diseases in rodents is problematic,

While there are other ways to model depressive-like phenotypes in rodents,
such as olfactory bulbectomy (Song and Lecnard 2005) and chronic stress para-
digms (Willner 2005, but see also Forbes et al. 1996), this chapter will focus on the
use of mutant genetic mouse lines in investigations of emotional behaviour as well
as what constitutes a behavioural model of depression in rodents.

2 Depressed Mice?

A major depressive episode in humans comprises a number of different core
symptoms and biological changes, but it is invariably a multifaceted event. Of the
many symptoms that can comprise a depressive episode, some are simply impossible
to model in rodents. These include the subjective feelings of fatigue and guilt, as well
as suicidal ideation. However, for many core symptoms there are analogous models,
which are reviewed m detail elsewhere (e.g., Crawley 2000). Here, some of these
models will be noted in brief to contextualise a subsequent more detailed discussion
of the work done using putative mutant mouse models of depression,
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A good rodent model of depression would feature many of the depressive-like
behaviours detailed below, as well as possibly some of the associated physiological
changes commonly seen in depressed individuals, such as altered EEG sleep archi-
tecture. When the depressive-like phenotype detected in a mutant mouse model can also
be reversed by clinically effective antidepressants, this adds to the validity of the model.

2.1 Depressed Mood

To avoid suggesting we can measure mood per se in rodents, the term “behav-
ioural despair” is often applied to tests sensitive to antidepressant treatment. The
two most commonly used tests for behavioural despair in mice are the forced swim
test and the tail suspension test.

2.1.1 The Forced Swim Test

The forced swim test was first developed in the late [970s as a test sensitive to
antidepressant activity in both rats and mice (Porsolt et al. 1977a, b, 1978a, b). At
its simplest, this test involves placing the rodent in a non-escapable cylinder of
water and monitoring the resultant behaviour. Measurement of the time spent
actively moving in an attempt to escape as well as the time spent passively
immobile, are thought to provide a way of quantifying the rodent’s propensity
toward helplessness (summarised in Cryan et al. 2005b). An important indicator of
the validity of the test is that the time spent immobile is typically decreased by
clinically effective antidepressant drugs.

Activity during non-immobile phases is thought by some to have separate
underlying neurobiological mechanisms. In particular, Denke and colieagues have
proposed that noradrenergic mechanisms mediate increased climbing, whereas
serotonergic mechanisms mediate increased swimming (Detke et al. 1997, 1995;
Detke and Lucki 1996).

The specifics of how this test is carried out vary somewhat between studies and labs,
but the typical duration of the forced swim Lest is 5-6 min. A day or so prior to the test,
there may also be a pre-exposure to the non-escapable cylinder of water, which acts asa
stressor and may improve the sensitivity of the test both to pharmacological and genetic
manipulations. Importantly, the test ought to be paired with an assessment of general
locomotor activity toexclude the potential confounding effect of hyperactivity induced
by the genetic manipulation or pharmacological agent.

2.1.2 The Tail Suspension Test

Similar to the forced swim test, the tail suspension test involves recording
immobility of mice exposed to an inescapable stressful situation, in this case
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suspension by the tail from a fixed structure, usually for 6 min (Steru et al. 1985).
This test has been extensively validated pharmacologically (see Cryan et al. 20052
for review) and can be used alongside, or as an alternative to, the forced swim test,

Aswith the forced swim test, independent assessments of locomotor activity should
be made to ensure the selectivity of any changes in immobility. A further issue with this
test is the curious ability of mice on the C57B1/6 background to climb up their own tails,
therefore confounding assessment of the time spent immobile (Mayorga and Lucki
2001}). Those mice that excessively display this acrobatic attempt to escape usually are
excluded from further analysis, which can lead to sampling bias.

2.2 Anhedonia

Anhedonia is also a core symptom of depression that can be measured in rodents,
and is sometimes overlooked in work with mutant mouse lines. Anhedonia is
typically assessed in rodents by measuring preference for sucrose or saccharine
over water (Papp et al. 1991). Reduced sucrose/saccharine preference is a typical
characteristic of rodents exposed to chronic stress paradigms, and has also
observed in genetic mouse models (El Yacoubi et al. 2003).

Decreased social interaction is often associated with anhedonia, as a reduction
in socialising is specifically mentioned in the DSM criteria under anhedonia (DSM
[V-TR 2000). In rodents, social behaviour can be quantified in a number of ways,
the simplest being to place two unfamiliar mice in an open arena for a fixed period
and measure the time spent engaged in active social interaction. However, the
level of sociability of mice in such a paradigm is affected by other behavioural
drives such as exploration of the environment or a reluctance to explore due to
high anxiety. Social interaction may therefore not offer an absolute measure of
anhedonia, but is, nonetheless, interesting as a naturalistic behaviour that
encompasses certain behaviours relevant to depression.

2.3 Anxiety

Although anxiety disorders form a class of psychiatric illness in their own right,
anxiety is also highly co-morbid with clinical depression (DSM IV-TR 2000;
Zimmerman et al. 2000). Many tests of anxiety exist in rodents that have been
developed and validated using clinically effective anxiolytic drugs such as ben-
zodiazepines. These tests include the elevated plus maze (Handley and Mithani
1984; Lister 1987; Pellow et al. 1985), open field (Hall 1936; Treit and Fundytus
1988) and light/dark box (Blumstein and Crawley 1983; Crawley and Goodwin
1980; Crawley 1981). These tests typically rely on measurement of a conflict
between competing behaviours in rodents; for exampie, on one hand to explore
novel environments and on the other to avoid possibly threatening situations such
as open, brightly lit areas which trigger an innate fear of predators.
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Assessments of locomotor activity during these tests can provide a useful
control to ensure that apparently altered levels of anxiety are not secondary to
changes in general activity. Such assessments include distance moved across the
arena, closed arm eniries (elevated plus maze) or light/dark transitions. These
assessments are best paired with an independent measurement of locomotor
activity, to ascertain if changes in movement are a likely product of being placed
in an anxious situation; a mouse may move less because it is anxious and thus
make fewer transitions, for example.

2.4 Other Symptoms

In addition to the measures of depressive-like symptoms mentioned above, many
other symptoms characteristic of a depressive episode can be modelled in rodents.
For example, alterations in weight and feeding behaviour can easily be assessed, as
can disrupted activity over the diurnal cycle. Further to this, sleep architecture,
which is often disturbed in depressed patients (Steiger and Kimura 2010), can be
assessed in rodents using implanted EEG electrodes.

There are many cognitive parameters that may be disrupted by a depressive
episode, including decisiveness and concentratior/attention. One task that is
thought to give a measure of attention in rodents 15 the serial reaction time task
{Robbins 2002}, although this task is more commonly used in rats than mice. Tests
of spatial memory are often substituted for measures of attention, although this
seems to conflate quite different cognitive processes.

Further tests may also be helpfu! to probe specific questions about the nature of
depressive-like state. For example, fear conditioning can be used as a model of aversive
learning which may be relevant to the underpinnings of depression. There are also
physiological disturbances often associated with depression in humans that can be easily
measured in rodents such as hypothalamic-pituitary adrenal (HPA) axis functionality.

The remainder of this chapter will illustrate how the behavioural tasks detailed
above can provide phenotypic measures of depressive-like behaviour in genetic
mouse models.

3 Genetic Mouse Models of Depression

Many mutant mouse lines have been created on the basis of the growing knowl-
edge of genes implicated in the pathogenesis of depression and its treatment. The
majority of these lines involve the inactivation of a candidate gene for depression,
resulting in an antidepressive-like phenotype. Examples of such models include
5-HT 4 receptor knockout mice (Heisler et al. 1998; Parks et al. 1998; Ramboz
et al. 1998) and noradrenaline transporter knockout mice (Xu et al. 2000). The
number of genetic models that result in depressive behaviours is much fewer,
although there are still examples across several neurobiological systems.
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A selection of these are discussed below along with some mutant mice that display
antidepressive-like behaviour that provide interesting counterpotnts to mice with a
depressive-like phenotype.

New mutant mouse models and gene targets of interest are constantly being
developed and investigated. The focus here will be on models relating to the
established monoamine hypothesis of depression and also the stress hypothesis
centred on corticotrophin-releasing factor (CRF). Also discussed is another
hypothesis of depression set around brain-derived neurotrophic factor (BDNF), a
more recent and contentious player in mood disorders. Each of these areas pro-
vides examples which illustrate the usefulness of the behavioural tests noted in
determining the extent of the depressive phenotype of the model. Other reviews
and perspectives of this field can also be found in the literature (e.g. Cryan and
Mombereau 2004; Gardier et al. 2009).

3.1 5-HT Transporter

The serotonin (5-hydroxytryptamine or 5-HT) system has long been implicated in
the pathogenesis of depression (Schildkraut 1965) as well as its treatment as
cxemplified by the current front-line antidepressant drugs being selective serotonin
reuptake inhibitors (SSRIs). Since these agents, like many other antidepressant
drugs, act by blocking the 5-HT transporter (Owens et al. 1997; Owens and
Nemeroff 1994), it places the latter as an important candidate gene for depression,
A further reason to study the 5-HT transporter gene is that there is a large, nat-
urally occurring variation in expression levels of this gene in the human popula-
tion. One driver of this variation is thought to be a common insertion/deletion
polymorphism in the promoter region of the gene (5-HTTLPR polymorphism) that
generates short (s) and long (1) alleles which are either low (s/s) or high (I/)
expressing, at least in cell-based models (Heils et al. 1996; Lesch et al. 1996). It is
thought that individuals with the low expressing variant of the 5-HT transporter
gene are predisposed to mood and anxiety disorders (Furlong et al. 1998; Lasky-Su
et al. 2005; Lotrich and Pollock 2004), although this remains contentious (e.g.
Anguelova et al. 2003).

There is some disagreement regarding the impact of the genetic pelymorphisms
and actual levels of functional 5-HT transporter protein in vivo (Mann et al. 2000;
Naylor et al. 1998; Rhodes et al. 2007; Shioe et al. 2003), which complicates
interpretation of the reported 5-HT transporter genotype—phenotype associations.
However, a reliable alteration in 5-HT transporter levels between individuals is
something that can be generated genetically in mice. Moreover, the high degree of
genetic homogeneity, within an experimental cohort of transgenic mice, 1s a major
help in reducing the confounds of a high level of genetic heterogeneity in a human
population, in addition to variation in the gene of interest. Furthermnore, gene x
environment interactions can also be better controlled with experimental animals
than with human participants.
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For investigations of the role of varation in the 5-HT transporter on behaviour
in mice both knockout and overexpressor lines exist, thereby enabling the study of
a range of expression levels in an otherwise well-controlled genetic system.
Genetic knockout of the 5-HT transporter might be predicted to have the same
effect as pharmacological blockade of the 5-HT transporter; that 1s, 5-HT trans-
porter knockout mice would be expected to behave similar to wild-type mice
treated with an SSRI. However, if we consider the findings from human gene
association studies that individuals with the low expressing variant of the 5-HT
transporter gene are predisposed to mood and anxiety disorders, then we might
expect 5-HT transporter knockout mice to show an anxious, depressive-like
phenotype.

Several laboratories developed 5-HT transporter knockout mice (first produced
by Bengel and colleagues 1998) but conflicting results were found in the early
studies. When bred onto a 12956/SvEv line 5-HT transporter knockout mice were
found to have increased immobility during single exposure to the forced swim test
(Lira et al. 2003) but, conversely, decreased immobility in the tail suspension test
(Holmes et al. 2002; Lira et al. 2003). Additionally, these mice appeared more
anxious in a novelty-suppressed feeding paradigm but did not show robust dif-
ferences from wild-type mice on the elevated plus maze (Holimes et al. 2003b; Lira
et al. 2003).

In comparison, 5-HT transporter knockout mice generated from mice on a
C57BY/6 J-129 Sv mixed background, showed a decrease in immobility in the tail
suspension test but no change in a two exposure form of the forced swim test
{(Perona et al. 2008). The latter mice showed no change in sucrose preference.
However, on a pure C57BV6 background, 5-HT transporter knockout mice showed
a robust increase in anxiety across a number of tests (Holmes et al. 20034, b;
Kalueff et al. 2007; Zhao et al. 2006, Line et al. 2011; but see also Adamec et al.
2006). These mice also showed an increase in immobility in both the tail sus-
pension test (Zhao et al. 2006; but see also Holmes et al. 2002) and forced swim
test (Wellman et ai. 2007), although the latter depressive-like phenotype required
multiple exposures to the test. These mice did not demonstrate altered sucrose
preference (Kalueff et al. 2006).

Whilst the contrasting effect of 5-HT transporter knockout in tests of behav-
ioural despair seem confusing, a robust pattern of increased anxiely can be seen
across strains and tests. The results from the forced swim test across all strains
suggest a depressive-like phenotype, albeit a subtle one that is only detectable
following repeated swim stress exposure. The findings from the tail suspension
test, however, are less easy to explain with antidepressant effects being detected in
mice on either a 129 or mixed.

5-HT transporter overexpressor mice have also been developed and charac-
terised, and the phenotype of these mice add much strength to the outcome of the
knockout studies, at least in terms of the anxiety data. Thus, the 5-HT trausporter
overexpressing mice were found to have reduced anxiety, the opposite of what is
generally seen in the knockout lines (Jennings et al. 2006; Line et al. 2011). In
studies of 5-HT transporter variation, these mice offer an interesting and vaiuable
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contrast to the knockout mice and allow for a wide range of expression levels to be
explored.

Overall, a likely important factor, in some of discrepant findings regarding the
5-HT transporter knockout mice, is the background strain of the mouse used to
construct the knockout. Ironicaily, this indicates that the genetic heterogeneity that
may account for conflicting results in human studies, also influence the outcome of
the genetic mouse studies. Further discussion of the issue of background strain in
mutant mice can be found later in this chapter. -

3.2 Noradrenaline

Noradrenaline has also long been associated with depression. There is evidence for
alterations of noradrenaline and its receptors in both depression pathophysiology
and in response to antidepressant administration (e.g., Ordway et al. 2003;
Deupree et al. 2007; see also chapter by Sharp in this volume). Perhaps the most
compelling evidence for a role for noradrenaline in depression is that the nor-
adrenaline transporter 1s a major target for tricyclic antidepressant drugs as well as
recently developed selective noradrenaline reuptake inhibitors (SNRIs). Nor-
adrenaline is also heavily involved in stress, which is a well-krown risk factor for
depression.

3.2.1 Adrenoceptors

Receptors for noradrenaline (adrenoceptors) are found throughout both the central
and autonomic nervous systems. Indeed, many of the adrenoceptor mutant mice
were initially constructed for investigations into the cardiovascular system. While
the focus here is on behavioural changes in these mice that are relevant to mod-
elling depression, changes in the periphery should not be forgotten as possible
confounds or, indeed, have direct relevance to changes emotionality and stress
levels.

Selective pharmacological tools for several subtypes of adrenoceptor are yet to
be developed and so much of what is known about the actions of some of these
receptors are derived from studies on adrenoceplor mutant mice. For example,
drugs non-selective for the different types of «, adrenoceptor have been found to
have wide-ranging effects that include altered sedation and cardiovascular chan-
ges, which have complicated interpretation of many behavioural measures. These
effects are largely the result of the o, 4 adrenoceptor as shown through use of a4
knockout mice (Lakhlianj et al. 1997).

In tests of depressive-like behaviour, ;4 adrenoceptor knockout mice dis-
played increased immobility in the forced swim test, mediated by decreased
climbing and not changes in swimming {Schramm et al. 2001). Also these mice
appeared more anxious in both the elevated plus maze (Lahdesmaki et al. 2002)
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Fig. 1 The locomotor activity of wild type and «,, adrenoceptor knoekout mice over a 24 h
period following a 2 h habituation period, Wild-type mice show a dramartic increase in loeomotor
activity in respense Lo the onset of the dark period of the diurnal eyele bul this is absent in wg,
adrenoceptor knockout mice. This may be relevant to the disruption of circadian rhythms seen
during a depressive episode (from Lahdesmaki et al. 2002)

and light/dark box, but the latter only following injection stress (Schramm et al.
2001). The o4 adrenoceptor knockout mice also displayed a flattened pattern of
activity across the diumal cycle (see Fig. 1), suggestive of disruptions to sleep/
wake cycle, as seen in depression. It is suggested that altered diurnal pattern of
activity may be due to the influence of the noradrenaline system on the synthesis of
melatonin (Lahdesmaki et al. 2002).

The study by Schramm and colleagues provides an interesting example in
which an antidepressant drug effect (imipramine) was seen in wild-type mice only
when a two exposure form of the forced swim test was used and not after a single
exposure (Schramm et al. 2001). This highlights the importance of how seemingly
minor changes to the forced swim test protocol can markedly alter the sensitivity
of the behavioural test.

In contrast to the ;4 adrenoceptor knockout mice, tc adrenoceptor knockout
mice were found to display decreased immobility in the forced swim test
(Sallinen et al. 1999). Again, the sensitivity of this test to detect this difference
was dependent on pre-exposure to the swim test (see Fig. 2). To further validate
the role of «, adrenoceptor subtypes in the forced swim test, a>c adrenoceptor
overexpressor mice were shown to have increased leveis of immobility in this
test (ibid.).

Overall, these data strongly implicate «; adrenoceptors in the forced swim test
measure of depressive-like behaviour, with a,4 adrenoceptor-mediated activity
appearing to be antidepressant and ;¢ adrenoceptor-mediated activity being pro-
depressive. While further testing needs to be done, the availability of both
knockout and overexpressor lines of these adrenoceptor-specific mutant mice will
allow for in-depth exploration of the role that these receptors play in emotional
behaviour.
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Fig. 2 The time spent active during a 5 min forced swim test following various lengths of prior
exposure 24 h previously in wild lype and ¢ adrenocepior knockout mice. Prior exposure to
forced swimming reduces activity in mice. In the case of this study, this effect was more dramatic
in wild-type mice and so revealed an anti-depressive-like phenctype in ayc adrenoceptor
knockout mice. This suggests the use of a pre-swim session may be imporiant in determining the
sensitivity of the forced swim tesi. Taken from Sallinen et al. (1999)

It is worth noting, however, that other non-mood-related alterations in behav-
iour have been noted in some of these mouse lines including altered pre-pulse
inhibition performance in both the a,c adrenoceptor knockout and overexpressor
mice (Sallinen et al. 1998). Nonetheless, these results have led to the oy adre-
noceptor being proposed as a possible target for future therapeutic drugs that
would lack the sedative effects of drugs that target ;5 adrenoceptors (Sallinen
et al. 1999). Whether such agents would be sufficiently specific for the treatment of
depression without having more wide-ranging effects remains to be seen.

The role of a; adrenoceptors in depressive behaviours has also been explored using
mutant mice. [n this case, instead of the receptor being knocked out, mice expressing a
constitutively active form of the receptor have been developed. Such mutants have
been constructed for both ;5 (Rorabaugh et al. 2005) and «,5 (Zuscik et al. 2000)
adrencceptors. The use of these mice has revealed complimentary alterations in
behaviour. Thus, mice with constitutively active &, 4 adrenoceptors having decreased
immobility in both the forced swim test (Doze et al. 2009) and tail suspension test
(Doze et al. 2009, 201 1), whereas mice with constitutively active &g receptors showed
increased immobility in these tests (Doze et al. 2009). The increased immobility in
these tests of the latter mice contrasted with their general hyperactivity in an open field
(with o 5 adrenoceptor constitutively active mutant mice having levels of locomotion
similar to their wildtype controls). The anxiety profile of the a, 4 adrenoceptor mutants,
however, is unclear (Doze et al. 2009, 2011), the a5 adrenoceptor mutant line do not
appear to have altered levels of anxiety (Doze et al. 2009).

This work using sub-type specific manipulations of adrenoceptors reveals complex,
opposing actions of these receptors in affective behaviour. The possibility of selec-
tively targeting specific adrenoceptor populations using pharmacological agents is
something yet to be taken advantage of in treatment of depression owing to the lack of
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appropriate drugs. While some current antidepressants act to block the reuptake of
noradrenaline, and so affect activity at all adrenoceptors, targeting specific subtypes of
the receptors for noradrenaline may produce more effective future therapeutics. This
research provides an interesting example of how work with genetically altered mice
has highlighted possible targets for future antidepressant drug development.

3.2.2 Noradrenaline Transporter

Noradrenaline transporter knockout mice display an antidepressant phenotype in both
the forced swim test (Perona et al. 2008; Xu et al. 2000} and tail suspension test (Perona
et al. 2008). This is, in spite of, also being found to be hypoactive (Perona et al. 2008,
Xu et al. 2000). However, no alteration was seen to their sucrose preference at a range
of sucrose concentrations (Perona et al. 2008). While the generally antidepressant-like
phenotype is in line with the effects of tricyclic antidepressants and SNRIs that block
the noradrenaline transporter, the data are in contrast to the findings from 5-HT
transporter knockout mice which do not have an antide pressant phenotype (see above).

This difference between these noradrenaline and 5-HT transporter knockout
lines is a curious one. The behavioural phenotype of the 5-HT transporter
knockout mice, which is, in simple terms, the opposite to that seen following acute
SSRI treatment, is often explained by a developmental origin of the phenotype,
citing the role 5-HT has during development {Gingrich et al. 2003).

To examine the influence of the 5-HT and noradrenaline transporters in brain
development, SSRIs and SNRIs have been administered to mice shortly after birth.
Early SSRI treatment produced persistent behavioural changes including increased
anxjety in adulthood (Ansorge et al. 2004, 2008). SNRI treatment, however, did not
result in the same life-long changes (Ansorge et al. 2008). This finding may account
for the contrasting phenotypes in the 5-HT transporter and noradrenaline transporter
knockout mice; early 5-HT transporter blockade leads to (over-)compensatory
changes that result in permanently altered emotionality, whereas early noradrenaline
transporter blockade does not. This might help to explain why life-long 5-HT
transporter blockade (5-HT transporter knockout) has the opposite effect to what
would be expected from SSRI treatment, whereas life-long noradrenaline transporter
blockade (noradrenaline transporter knockout) has effects similar to SNRI treatment.

The phenotypes of the transporter mutant mice illustrate the often complex rela-
tionship between pharmacological and genetic interventions, and also emphasises the
importance of developmentai effects of gene knockout on adult emotional behaviour.

3.3 CRF-Related Models

The role of corticotrophin-releasing factor (CRF) is traditionally seen as being
imbedded in the hypothalamic-pituitary adrenal (HPA) axis, in that this neuropeptide
is released from the hypothalamus to stimulate release of adrenocorticotrophic
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hormone (ACTH) from the pituitary that subsequently leads to the release of corti-
costeroid “stress hormones” from the adrenal glands. This process may in itself be
important in depression, but receptors for CRF are expressed throughout the brain,
not just in the hypothalamus. Therefore, extra-hypothalamic actions of CRF may alseo
be important in the pathophysiology of depression.

CRF acting at CRF, receptors in limbic brain areas, such as the cerebral cortex,
hippocampus and amygdala, is thought to lead to many of the behaviours asso-
ciated with anxiety and depression (Holsboer 2000). This signal is modulated by a
second class of CRF receptors, CRF, receptors, which bind CRF-like proteins
known as urocortins, Thus far, three urccortins have been characterised; urocortini
(Donaldson et al. 1996; Vaughan et al. 1995), urocortin2 (Reyes et al. 2001) and
urocortin3 {(Lewis et al. 2001). These peptides are expressed throughout the CNS§
in overlapping but unique patterns. Generally, activity at CRF; receptors is thought
to dampen the effects of CRF,; receptor activity and so is broadly anti-depressive
and anxiolytic. Further modulation of this system is achieved by the CRF binding
protein which sequesters all CRF-like proteins and prevents them binding to the
receplors.

Mutant mouse lines with greatly increased CRF activity have been found to
exhibit a Cushing’s-like cluster of symptoms. For example, CRF overexpressor
mice were found to have increased anxiety (Heinrichs et al. [997; van Gaalen
et al. 2002), but aiso thin skin, alopecia and altered fat and muscle deposition
(Stenzel-Poore et al. 1992). Despite these many changes, CRF overexpressor mice
provide an example of a mouse line that has been tested on some important but
often ignored components of depressive-like behaviour. For instance, CRF mice
have been shown to have a deficit in the serial reaction time task, a highly
involved cognitive task that may be more relevant to the deficits seen in depression
than assessments of, for example, spatial memory (van Gaalen et al. 2003).

CREF knockout when carried out during development has a profound effect on
the viability of mouse offspring, but does not have this detrimental effect when
carried out in adulthood (Muglia et al. 1995). For instance, mice with CRF
genetically removed during adulthood show a blunted, but still intact stress
response (Tacobson et al. 2000; Weninger et al. 1999).

Two independent lines of CRF| receptor knockout mice have been produced
and both displayed decreased anxiety across several tests (Smith et al. 1998; Timpl
et al. 1998). Interestingly, the decrease in anxiety following CRF, receptor
knockout was also seen in a line of mice that have the CRF, receptor knockout
restricted to the forebrain (Muller et al. 2003). These mice have a lack of CRF,
receptors in limbic areas of the brain but still express these receptors in the
pituitary. Because of this, measures of basal HPA axis activity are normal, but
altered anxiety behaviours can still be detected. This is an important piece of
evidence for the role of centrally acting CRF in mood in addition to its role in
regulating corticosteroid release.

In contrast to the findings with CRF, receptor mutants, CRF, receptor knockout
mice showed increased anxiety (Bale et al. 2000; Kishimoto et al. 2000; but see
also Coste et al. 2000) as well as increased immobility in the forced swim test
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(Bale and Vale 2003). This adds to the evidence that CRF, and CRF; receptors
have broadly opposing roles in mediating emotional behaviour.

Further to this, weight and food intake were investigated in these mice. Body
weight was not found te differ, and food intake was not altered at baseline. Fol-
lowing 24 h of food deprivation, however, CRF, receptor knockout mice were
found to eat less than wild-type mice despite there still being no detectable dif-
ference in body weight (Bale et al. 2000). This may relate to the changes in feeding
behavtour seen during a depressive episode, but are only noticeable after a mild
stressor such as acute food deprivation is applied.

Receptors for the corticosteroids that are the product of HPA axis activity are
also expressed centrally. Mineralocorticoid receptors have high affinity for corti-
costeroids, and several studies using mutant mice have helped in investigating the
function of these receptors. Global knockout of these receptors proved to be
perinatally lethal as corticosteroid signalling is vital to early lung development
(Cole et al. 1995). Forebrain-specific deletion of mineralocorticoid receptors,
however, produced viable offspring. These mice showed increased immobility in
the forced swim and tail suspension tests (Boyle et al. 2005). However, overex-
pression of these receptors was also shown to result in increased immobility in the
forced swim test, as well as increased anxiety-like behaviour in the elevated plus
maze (Wei et al. 2004). This suggests an inverted U relationship between central
corticosteroid signalling and emotionality.

The use of mutant mice has therefore shed some light on the roles of the CRF
system in depression-related behaviours, and provided strong evidence for a key
role for centrally expressed CRF receptors. This consideration of the wider CRF
system and beyond the HPA axis has further avenues to be explored using mutant
mice. For example, the testing of urocortin mutant mouse constructs in tests of
depressive-like behaviour have begun (e.g., Chen et al. 2006; Neufeld-Cohen et al.
2010) although an extensive literature in this area is awaited. These models may
provide further information on subtle but life-long changes to the CRF system.

3.4 BDNF

Recent theories regarding the mechanisms of depression and antidepressant action
go beyond the role of neurotransmitter systems to emphasise the importance of
neurotrophins (Hashimoto 2010). Trophic factors, such as BDNF, are integral to
neurcnal development and survival as well as neuroplasticity not only during early
life but also in adulthood (Thoenen 1995). Moreover, expression of BDNF in the
adult rodent brain was found to be reduced by corticosteroids and stress, and
increased by antidepressants (Dwivedi et al. 2006). These findings and many
others make BDNF an attractive addition to a unified neurobjological under-
standing of depression.

BDNF knockout mice were first produced in 1994 and found to have a plethora
of detrimental phenotypes as well as perinatal lethality (Ernfors et al. 1994).
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Behavioural work has therefore focused on heterozygote BDNF knockout mice,
These mice, conversely, show relatively normal baseline behaviours including
unaltered performance on the elevated plus maze and normal sucrose consumption
(MacQueen et al. 2001). The mice also showed no change (MacQueen et al. 2001)
or only subtle effects (Chourbaji et al. 2004} in various forms of the forced swim
test. Overexpression of BDNF, however, was found to result in an antidepressant-
like phenotype in the forced swim test, but also increased anxiety in the elevated
plus maze (Govindarajan et al. 2006). h

Conditional knockout mice that either have life-long or only adult reductions of
BDNF have also been produced (Chan et al. 2006), allowing the dissection of the
consequences of BDNF depletion during development from those during aduli-
hood. The findings in these lines were surprisingly similar, with both showing a
depressive-like phenotype in the tail suspension test but an antidepressant phe-
notype in a three exposure forced swim test paradigm (Chan et al. 2006). Neither
line demonstrated changes in the elevated plus maze. These similarities between
the two lines suggest that reductions in BDNF post-development are sufficient to
produce the phenotypes, although once again, this phenotype is not consistently
depressive-like.

Indeed, the role of BDNF in the pathogenesis of depression has been questioned
(Groves 2007), although the case for a role of BDNF in antidepressant activity
seems strong. The latter is supported by evidence that each of BDNF heterozygote
mice, inducible BDNF knockout mice, and mice expressing non-functional
versions of trkB, the high affinity receptor for BDNF, are resistance to the effects
of antidepressant treatment in the forced swim test (Saarelainen et al. 2003;
Adachi et al. 2008; Monteggia et al. 2007). It is worth noting that the baseline
affective behaviours of the trkB mouse line are normal (Saarelainen et al. 2003;
Zorner et al. 2003).

Overall, whilst the importance of BDNF in emotionality is still under investi-
gation, current data suggest that at least in the hippocampus, BDNF gene
expression is decreased by stress and corticosteroids and increased by antide-
pressant treatment. However, whilst data from genetically altered mice indicate
that antidepressant effects require BDNF signalling, there does not appear to be
such a strong link between BDNF signalling and depressive-like behaviours.

4 Concerns and Considerations

4.1 Background Strain

The issue of background strain has already been raised in this chapter, particularly
in relation to the phenotype of 5-HT transporter knockout mice that differs across
several lines. This is addressed and discussed extensively in Holmes et al. (2003a).
The simplest explanation for the differences is that the various wild-type mice used
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to generate the mutants do not provide a sufficiently sensitive baseline to detect
differences. For instance, Holmes et al. (2003a) compare 5-HT transporter
knockout mice on two different background strains, 12956 and C57BL/6, in the
light/dark box (see Fig. 3). In this test, a decrease in time spent in the light
compartment would reflect a high-anxiety phenotype. As can be seen, however,
the 12956 wild-type mice spend very little time in the light compartment, making
a further decrease difficult to observe. In contrast, the C57Bl/6 wild-type mice
spend more time in the light compartment, therefore giving a baseline from which
a decrease can be observed. The behavicur of wild-type control mice, therefore,
can affect the sensitivity of the tests. Further discussion of this issue can be found
in Jacobson and Cryan (2007).

Another theory to explain the lack of consistent phenotype across different
5-HT transporter knockout lines is that genes flanking the mutant construct are
incorporated into the genome of experimental mice during backcrossing onto a
new background strain. In the case of the Holmes et al. (2003a) study, this would
result in “129 genes” being inserted into C37BY6 mice. The observed decrease in
time spent in the light compartment of the light/dark box may therefore be due to
these flanking genes being inserted into the mutant mice and not because of loss of
the 5-HT transporter gene per se. Sequencing of the site of insertion would reveal
the likelihood of this confound.

Finally, genes that modify the effects of the mutant construct may exist at sites
distal to its insertion, and these genes may only be present in particular background
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strains. For instance, one background strain may carry a particular allele of a gene
that can compensate at a molecular level for the loss of the 5-HT transporter gene,
whereas a different non-modifying allele may be present in other background
strains. in this case, a possible explanation for the difference in phenotype between
5-HT transporter knockout mice on the C57BI1/6 background and that on a 129S6
background may be due to a protective genetic variant at another site present in the
latter but not the former mice. This possibility would require extensive investi-
gation as the putative genetic difference could be located anywhere in the entire
genome. Further discussion of these theories can be found in the Holmes et al,
(2003a) paper.

The controversy surrounding links between the 5-HT transporter and emo-
tionality may be an example of how these issues also apply to human studies,
When dealing with human subjects, there is a high degree of genetic heterogeneity.
By genotyping for only one gene and then linking this to complex behavioural
traits ignores the possibility that other genes may contribute, not only to the
behaviour in question, but also to the expression level of the protein encoded by
the gene in question. These gene x gene interactions may account for some of the
“missing heritability” not yet accounted for by known genetic risk factors for
various psychiatric conditions. While in vivo assessments of functional protein
levels in humans can be expensive or impractical, histological measures of protein
expression in experimental animals provide a way of ensuring that the genetic
manipulation performed has the expected effects at a molecular level. While this
may not always explain discrepancies in results, it is a useful validation step in
using and producing mutant mouse lines.

4.2 Sex Effects

It is well established that females are more likely to develop clinical depression
than males (DSM IV-TR; Weissman and Klerman 1977), a striking vulnerability
difference for which the underlying mechanism is not yet known. In this regard,
it would be valuable to recapitulate such sex difference in experimental animal
models, but this is complicated by evidence that male mice and rats are
more susceptible to learned helplessness than females (Caldarone et al. 2000;
Steenbergen et al. 1990). This suggests that contrary to findings in humans, in
rodents males are more predisposed to developing depressive-like phenotypes
than females. What should be expected in terms of sexual dimorphism in
depressive-like behaviours in mutant mice is therefore unclear.

As in the case of the baseline behaviour of mice with different background
strains, male and female mice provide different baselines on a variety of behav-
iours. Thus, only investigating one sex may mask effects that would otherwise be
apparent in the other. If striking differences are found following genetic manip-
ulation, it may be that sex hormones are modulating the effects seen, in which case
providing a further of avenue of study that could be highly translatable. Many
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basic studies with mutant mice use only males to avoid having to control for
variation in the oestrus cycle during behavicural testing. Nevertheless, since sex
hormones may tmpact on phenotypic differences between mutant and wild-type
mice, investigations using both male and female mice could add further insight
into the role that sex differences play in depression vulnerability.

4.3 Environmental Factors

As in humans, there is considerable evidence from animal studies that adverse life
events such as stress, including that experienced during early life, increase
depression vulnerability {e.g. Willner 2005; see chapter in this volume by Harro).
Moreover, it seems highly likely that genetic and environmental risk factors
interact in ways that are not yet fully understood to increase predisposition to
depression (e.g., Kendler et al. 2001). A potentially powerful way to investigate
this is through the combination of genetic and well-controlled environmental
manipulations in mice. There are increasing examples of such studies emerging in
the literature, which are reviewed elsewhere.

4.4 The Perfect Model?

So what can we hope for in attempting to model depression using mutant mice, and
are we there yet?

Depression is a complex condition consisting of a variety of symptoms, only a
small number of which are possible to investigate in rodents. However, as noted in
this chapter, there are some core behavioural symptoms that are accessible to
investigation in rodents in a highly relevant way, and these can be expanded to
include measurement of physiological changes such as the sleep/wake cycles and
food intake. Nonetheless, in the case of genetic mouse models of depression the
majority of studies being reported at present often rely heavily on measures of
behavioural despair such as the forced swim test and tail suspension test without
exploring the wider symptomatology of depression. Often a more complex anal-
ysis of the current models would give greater insight into their validity. Hopefully,
this will be a feature of future models.

While a genetic mouse model that recapitulates the fullness of the symptoms
that typically feature in a clinical depressive episode seems overoptimistic and
probably unachievable, a frank assessment of a wider variety of behaviours than is
typically presented in the current literature may provide a clearer view of the likely
contribution to depression pathophysiology of specific genes. Nevertheless, given
that specific genes, and often genes with unclear functions, can be manipulated in
an increasingly powerful and controlled way, key questions can now be asked
about the contributions of a single gene to a specific behavioural processes that are
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highly relevant to depression vulnerability, in a way that is not possible in human
gene association studies. This is not to deny, however, sometimes confounding
effects that can be occur from targeting genes in mice, such as noted above with
the example of the 5-HT transporter.
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