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ABSTRACT: Epidemiological evidence has estab-

lished links between immune activation during the pre-

natal or early postnatal period and increased risk of

developing a range of neurodevelopment disorders in

later life. Animal models have been used to great effect

to explore the ramifications of immune activation during

gestation and neonatal life. A range of behavioral, neu-

rochemical, molecular, and structural outcome meas-

ures associated with schizophrenia, autism, cerebral

palsy, and epilepsy have been assessed in models of pre-

natal and postnatal immune activation. However, the

epidemiology-driven disease-first approach taken by

some studies can be limiting and, despite the wealth of

data, there is a lack of consensus in the literature as to

the specific dose, timing, and nature of the immunogen

that results in replicable and reproducible changes

related to a single disease phenotype. In this review, we

highlight a number of similarities and differences in

models of prenatal and postnatal immune activation

currently being used to investigate the origins of schizo-

phrenia, autism, cerebral palsy, epilepsy, and Parkin-

son’s disease. However, we describe a lack of synthesis

not only between but also within disease-specific models.

Our inability to compare the equivalency dose of immu-

nogen used is identified as a significant yet easily rem-

edied problem. We ask whether early life exposure to

infection should be described as a disease-specific or

general vulnerability factor for neurodevelopmental dis-

orders and discuss the implications that either classifica-

tion has on the design, strengths and limitations

of future experiments. ' 2012 Wiley Periodicals, Inc. Develop

Neurobiol 72: 1335–1348, 2012
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INTRODUCTION

Early life events can have significant effects on an

organism’s long-term health and wellbeing during

adulthood. Since the \Barker hypothesis" drew atten-

tion to the impact of prenatal nutrition on the risk of

subsequent adult-onset disorders such as diabetes, cardi-

ovascular disease, and hypertension (Barker and Mar-

tyn, 1992), this field, also known as the developmental

origins of health and disease, has expanded to demon-

strate how influential the prenatal environment is on a

wide range of adult health outcomes (Barker, 2004;

Sinclair et al., 2007; Sinclair and Singh, 2007). With

respect to the central nervous system (CNS), early

events that have been implicated in altering the trajec-

tory of neurodevelopment include pregnancy and birth

complications, maternal/neonatal exposures to nutri-

tional deficiency, stress, drugs or toxins, and postnatal

social deprivation (Schlotz and Phillips, 2009). Infec-

tion with resulting immune activation is another such

insult, and the focus of the current article is on how

animal models of prenatal and postnatal immune activa-

tion are being used to study the role of early life infec-

tion in the etiology of neurodevelopmental disorders.

Prenatal or early postnatal immune activation has

been implicated in a number of major neurodevelop-

mental disorders, including schizophrenia, autism, cere-
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bral palsy, and epilepsy (Pakula et al., 2009; Brown

and Derkits, 2010; Landrigan, 2010). While disorders

like schizophrenia and autism appear to be uniquely

human, certain structural, molecular, and behavioral

abnormalities found in these human disorders can be

assessed in animals species commonly used for preclin-

ical research. It will be recalled that the etiologies of

disorders like schizophrenia, autism, or cerebral palsy

are multifactorial, likely involving a complex interplay

between genetic and environmental factors. Thus, it

should not be surprising if CNS effects produced by a

single risk factor in isolation, like prenatal infection,

are rather subtle, and may not mimic the entire spec-

trum of abnormalities characteristic of the disorder.

Nonetheless, the development of animal models allows

us to address specific questions about effects of expo-

sure to early life infection, e.g., the timing of the criti-

cal period of exposure to the immune activation; the

duration and severity of the inflammatory response; the

trajectory of neurodevelopmental changes during

juvenile and adult life; the mechanisms mediating

effects of immune activation on neurodevelopment;

and responses to potential therapeutic intervention.

The approach taken by many researchers in this

area is to focus on a specific disorder and to work with

a particular model of prenatal or postnatal immune

activation, which attempts to mimic the epidemiology

of the disorder, concentrating on assessing end points

characteristic of that disorder as outcome measures.

The aim of this review is to provide a brief overview

of the range of models of early life immune activation

currently being used within the context of various neu-

rodevelopmental diseases. After a brief introduction to

the immunogens commonly used to induce immune

activation, we will describe some of the models,

mainly in rodents, that are commonly used to examine

effects of prenatal or postnatal immune activation in

relation to schizophrenia, autism, cerebral palsy, epi-

lepsy, and other disorders. Rather than aiming to be

exhaustive, we will use a selection of examples to

compare and contrast abnormalities in disease-specific

endpoints observed in these models.

It is possible that a better integration of findings

across specific disease-based models might enhance

our understanding of the overall effects of early life

exposure to infection on neurodevelopment. There-

fore, in the course of the review, we hope to highlight

some of the similarities and differences between these

models and suggest that a broadening of the outcome

measures assessed in some already well-established

models or collaboration between researchers with

interests in different diseases might be a valuable

option to consider.

IMMUNOGENS USED TO MODEL
PRENATAL OR POSTNATAL IMMUNE
ACTIVATION

Molecular Immunogens

The most common immunogens used to induce

inflammation in pregnant mice and rats are lipopoly-

saccharide (LPS) and polyinosinic:polycytidylic acid

[poly(I:C)]. LPS, a component of the cell wall of

Gram negative bacteria, is a molecular immunogen

used to mimic a bacterial infection whereas poly(I:C),

a synthetic, double-stranded RNA, mimics a viral

infection. Both immunogens bind to toll-like recep-

tors [LPS to TLR-4, poly(I:C) to TLR-3], initiating a

signaling cascade that leads to activation of transcrip-

tion factors, such as nuclear factor kappa B (NFjB)

and subsequent transcription of genes coding for pro-

and anti-inflammatory mediators such as cytokines

[interleukin (IL)-1, tumor necrosis factor (TNF)-a,

IL-6, and interferons (IFNs)], chemokines, and com-

plement proteins. IL-6 then acts in the brain to induce

cyclooxygenase-2-mediated synthesis of prostaglan-

dins in the hypothalamus, which can mediate a fever

response (Roth et al., 2009). Although there are broad

similarities in some components of the proinflamma-

tory cytokine cascade induced by both LPS and

poly(I:C), there can be significant differences in the

magnitude of cytokine responses induced by these

two types of immunogens, as well as both quantita-

tive and qualitative differences in the cell types that

respond to activation, the profile of cytokine induc-

tion, and activation of downstream signaling cascades

(e.g., Bsibsi et al., 2006; Reimer et al., 2008; Figueir-

edo et al., 2009). Also, importantly for models of

inflammation during pregnancy, TLR3 and TLR4

may be differentially modulated by hormones, includ-

ing progesterone (Jones et al., 2010), whose levels

increase throughout pregnancy, peaking during late

pregnancy in humans and rats and falling just before

parturition in the rat (Bridges, 1984).

When comparing findings within models of early

life immune activation, one simple but important fac-

tor to consider is the dosage of immunogen used.

These models make widespread use of LPS as the

immune activator; however, despite its frequency of

use, it is difficult to compare LPS dosages across stud-

ies as it is known that the bioactivity of LPS per milli-

gram is dependent on the lot and serotype of the strain

of Escherichia coli (Ray et al., 1991; Akarsu and

Mamuk, 2007). This results in an inability to effec-

tively compare and contrast between models, particu-

larly in instances where authors do not provide details

of in vivo or in vitro bioactivity assays. Similar to the
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case for LPS, we have recently reported that different

batches of poly(I:C) obtained from the same supplier

differ widely in their cytokinogenic activity when

measured by induction of plasma IL-6 (Harvey and

Boksa, 2012). Given this variability, the standardiza-

tion of LPS and poly(I:C) dosages, through reporting

of meaningful bioactivity levels in each publication,

would represent a significant step forward in helping

to increase the transparency and reproducibility of

models of early life immune activation.

Live Viruses

Although seemingly out of favor compared to LPS

and poly(I:C), some of the first models of prenatal

infection were designed using intranasal influenza

administration (Shi et al., 2003). The advantage of

using this immunogen is that, as the infection is live,

the time course of propagation of the immune activa-

tion is naturalistic. This advantage is also a limitation,

however, as the researcher loses some control over

the dosing and window of exposure. Viruses have

also been used in neonatal rodent models to examine

the neurodevelopmental consequences of congenital

or neonatal infection with specific agents such as

Borna disease virus, cytomegalovirus, and lympho-

cytic choriomeningitis (Hornig and Lipkin, 2001;

Barry et al., 2006; Bonthius and Perlman, 2007).

Turpentine

Intramuscular injection of turpentine has an advanta-

geous feature as a model of maternal immune activa-

tion because, in contrast to systemic LPS and

poly(I:C) administration, the turpentine remains

localized at the site of injection (Wusteman et al.,

1990). This obviates direct effects of the immunogen

on maternal organs and on the placental–fetal unit.

Intramuscular turpentine causes an increase in circu-

lating IL-6 mediated by local production of IL-1 and

TNF-a and a robust febrile response (Luheshi et al.,

1997).

Direct Administration of Cytokines

A key question is whether activation of specific com-

ponents of the immune system can account for the

effects of prenatal or postnatal infection on the CNS.

Models using direct administration of cytokines to

pregnant rodents during gestation or to postnatal

rodents have been used to address this. For example,

the recognition of IL-6 as a key mediator in the

inflammatory response has led to the development of

models of maternal immune activation in which

IL-6 is administered directly to the pregnant dam

(Samuelsson et al., 2006; Smith et al., 2007).

DISEASE-BASED MODELS OF
PRENATAL AND EARLY POSTNATAL
IMMUNE ACTIVATION

Schizophrenia

Epidemiological evidence has described an increased

risk of schizophrenia in the offspring of mothers

exposed to viral infections (influenza, measles, herpes

simplex virus type 2, rubella, and polio), bacterial

infections (pneumonia, respiratory infections, genital,

and reproductive infections including bacterial vagi-

nosis), and parasites (notably Toxoplasmosis gondii)
(reviewed by Brown and Derkits, 2010). Both first

and second trimester exposures have been implicated

in increasing risk for schizophrenia. Accordingly, the

most common models of maternal immune activation

used in relation to schizophrenia are those in which

pregnant rodents are systemically administered either

poly(I:C) or LPS. It is generally assumed that the first

two trimesters of human gestation are roughly equiv-

alent to the entire gestation period in a rat or mouse.

Thus, the time of exposure to immunogen used varies

widely across rodent models, from one or two injec-

tions of immunogen early or late in gestation to once

daily injections throughout the entire gestation period

(reviewed by Boksa, 2010).

Outcome measures assessed in these models

include a wide range of behavioral, structural, and

molecular parameters deemed to be relevant to schiz-

ophrenia. The details of many of these studies were

comprehensively reviewed by Boksa (2010). At a be-

havioral level, three of the most germane measures

that have been examined are prepulse inhibition (PPI)

of startle, latent inhibition, and attentional set shift-

ing, since these can be assessed in both rodents and

humans using very similar paradigms, and deficits in

these have been consistently found in schizophrenia

patients. PPI is the most frequently measured behav-

ioral outcome assessed in rodent offspring from pre-

natal immune activation models. Consistent PPI defi-

cits have been reported in mice administered prenatal

poly(I:C), LPS, influenza virus or IL-6, and in rats

administered prenatal poly(I:C) or LPS (Shi et al.,

2003; Fortier et al., 2007; Smith et al., 2007; Meyer

et al., 2008c; Wolff and Bilkey, 2008; Romero et al.,

2010; Howland et al., 2012). Deficits in latent inhibi-

tion, a more subtle measure of attention and informa-

tion processing, have also been reported in mice and
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rats prenatally treated with poly(I:C) and mice prena-

tally treated with IL-6, however, to date, are unre-

ported in prenatal LPS models (Zuckerman et al.,

2003a; Zuckerman and Weiner, 2003; Meyer et al.,

2006a; Smith et al., 2007). Recently, alterations in

attentional set shifting, indicative of perseveration,

have also been observed in male rat offspring prena-

tally administered poly(I:C) (Zhang et al., 2012).

Social behavior has been shown to be impaired in

maternal poly(I:C)- and influenza-treated mice (Shi et

al., 2003; Smith et al., 2007), and deficits have been

described in a variety of learning and memory para-

digms, including spatial learning in the Morris Water

Maze, for both mice and rats as a result of prenatal

treatment with LPS, poly(I:C), and IL-6 (Meyer et

al., 2006b; Ozawa et al., 2006; Samuelsson et al.,

2006; Coyle et al., 2009).

Historically, dysfunction of the dopaminergic sys-

tem has been considered a hallmark of schizophrenia

neurochemistry. As such, amphetamine-induced loco-

motor activity and changes in brain tyrosine hydroxy-

lase and dopamine metabolite content have been used

as markers of dopaminergic activity in animal mod-

els. Extensive changes in these measures have been

reported in many models of maternal inflammation;

in particular, an increase in amphetamine-induced

locomotion has been reported in both the offspring of

mice and rats prenatally treated with poly(I:C) and of

rats prenatally treated with LPS (Zuckerman et al.,

2003b; Fortier et al., 2004; Meyer et al., 2008c).

More recently, schizophrenia research has focused on

excitatory and inhibitory amino acid transmission,

with reported hypofunction of N-methyl-D-aspartate

(NMDA) receptors and GABAergic interneurons in

the frontal cortex and hippocampus in clinical and

postmortem schizophrenia populations (Coyle and

Tsai, 2004; Nakazawa et al., 2011). Alterations in short-

term plasticity, long-term potentiation, and NMDA/

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) receptor activity have been reported in rats

prenatally treated with LPS during late gestation (Lante

et al., 2008; Lowe et al., 2008; Roumier et al., 2008).

Maternal administration of LPS to rats during late gesta-

tion led to reductions in hippocampal reelin and

GAD67, markers of GABAergic interneurons, in the

offspring (Nouel et al., 2012) while administration of

poly(I:C) in early gestation in mice led to decreases in

hippocampal reelin and immunogen- and sex-specific

increases in GAD67 (Meyer et al., 2006b; Harvey and

Boksa, 2012).

At the molecular level, there appear to be fewer

parallels between described changes in brains of peo-

ple with schizophrenia and the detailed molecular

alterations in brains from animals subject to prenatal

immune challenge. Some studies have described

long-term changes in synaptophysin, brain-derived

neurotrophic factor, parvalbumin, and Akt following

maternal immune activation in rodents (Golan et al.,

2005; Romero et al., 2007a; Makinodan et al., 2008;

Meyer et al., 2008c; Romero et al., 2010); however,

these studies tend to come from single laboratories

and have not yet been replicated across species or

immunogen.

Autism

Epidemiological evidence also links prenatal immune

activation with an increased risk of developing autism

in later life (reviewed by Patterson, 2012). For some

time, this link was less established than that between

schizophrenia and prenatal immune activation. Recent

studies have described associations between viral

infection in the first trimester, bacterial infection in

the second trimester, and an increased risk for autism

in the offspring (Atladottir et al., 2010) as well as a

link between elevated amniotic levels of monocyte

chemotactic protein-1 (Abdallah et al., 2012), TNF-a
and �b (Abdallah et al., in press), and the risk of

developing autism in later life. A retrospective study

looking at banked sera from mothers whose offspring

were later diagnosed with autism found increased lev-

els of IFN-c, IL-4, and IL-5 in maternal serum at

midgestation (Goines et al., 2011). Given these recent

findings, much of the existing research regarding au-

tism and prenatal immune activation has been

appended onto existing animal models of prenatal

infection, notably prenatal poly(I:C) and prenatal

influenza administration, which have been developed

with respect to schizophrenia epidemiology. This

approach has proved fruitful given there are signifi-

cant similarities between the disorders, with a recent

article even suggesting that it may be neuroinflamma-

tory events during early fetal development which

result in this shared pathogenesis (Meyer et al., 2011).

The most well-known characteristic of autism in

humans is behavioral alterations including sensory

and motor deficits, elevated anxiety and impaired

social interaction, communication, and emotional

processing (Wing, 1997). As with schizophrenia, peo-

ple with autism often have an impaired ability to filter

environmental stimuli, which has been assessed using

PPI (Perry et al., 2007). The PPI deficits and altera-

tions in social interaction reported in various models

of prenatal immune activation are described in the

section on \Schizophrenia". Three mouse studies,

one using maternal influenza administration (Shi et

al., 2003) and two using maternal poly(I:C) adminis-

tration (Smith et al., 2007; Malkova et al., 2012),
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have described a number of behavioral changes in the

offspring, including deficits in PPI, decreased social

behavior, increased markers of anxiety, ultrasonic

vocalization deficits, and repetitive behaviors, which

mimic the behavioral outcomes of people with au-

tism. It is interesting to note that all of these studies

used a viral immunogen at early to midgestational

time points to induce these behaviors; this correlates

very well with recent autism epidemiology and sug-

gests further that targeted research using these immu-

nogens, at these time points, is warranted.

Disrupted neurochemistry and neurotransmitter

function is also evident in brains of people with au-

tism (reviewed by Lam et al., 2006). Alterations in

the serotonergic system have been reported, and there

is conflicting evidence on the altered function of the

dopaminergic system. We have described some of the

changes in dopamine system function in animal mod-

els of prenatal immune activation in the section on

\Schizophrenia". Deficits in serotonin and its main

metabolite have been described in various brain

regions of mice prenatally treated with poly(I:C) at

E9 (Winter et al., 2009), mice prenatally treated with

influenza at E16 or E18 (Fatemi et al., 2008; Winter

et al., 2008), and rats prenatally treated with LPS at

E10.5 (Wang et al., 2009a). However, none of the

studies describing these changes in serotonin

included any behavioral measures of anxiety or social

interaction, which could have strengthened our under-

standing of the potential relationship between neuro-

chemical and behavioral changes that manifest as a

result of prenatal immune activation.

Markers of hippocampal, amygdalar, and cerebel-

lar dysfunction, including small cell size and

increased cell density in these regions, a reduction in

Purkinje cell number, and, developmentally, abnor-

mally enlarged neurons in the cerebellum, are consid-

ered hallmarks of autistic brain morphology (Bauman

and Kemper, 2005; Amaral et al., 2008). There have

been consistent reports of alterations in cerebellar

and hippocampal Purkinje cell number, size, and den-

sity in mouse models using prenatal influenza at both

early and late gestational time points (Fatemi et al.,

1999, 2002, 2008, 2009; Shi et al., 2009) and some

isolated descriptions of cerebellar and hippocampal

changes using maternal poly(I:C) in the mouse and

maternal IL-6 in the rat (Samuelsson et al., 2006; Shi

et al., 2009).

Finally, alterations in the central and peripheral

immune system, such as changes in plasma and brain

cytokines, dysregulation of immune-related genes,

alterations in gastrointestinal tract permeability, and

some autoimmune-like responses, have been reported

in people with autism (White, 2003; Ashwood and

Van de Water, 2004). In animal models of prenatal

immune activation, there are conflicting reports as to

whether cytokines are induced in the fetal brain fol-

lowing exposure to the immunogen (Cai et al., 2000;

Urakubo et al., 2001; Gayle et al., 2004; Ashdown et

al., 2006; Meyer et al., 2006b). Regardless of this

uncertainty, most of these markers were measured

just hours following the inflammatory event. With

respect to long-term effects, exposure of rats to single

doses of LPS either prenatally or neonatally has been

reported to result in reduced induction of plasma

cytokines (IL-6, TNF-a, and IL-1b) in response to

LPS challenge in adolescence or adulthood (Hodyl et

al., 2007; Galic et al., 2009b; Beloosesky et al.,

2010). However, prenatal LPS or poly(I:C) treatment

of rats has also been reported to result in elevated ba-

sal plasma cytokine levels later in life (Carvey et al.,

2003; Romero et al., 2007a, 2010; Han et al., 2011).

Currently, less is known about the long-term effect of

early life infection on cytokine content in the brain,

although Bilbo et al. (2005) have observed that rats

injected neonatally (P4) with E. coli show exagger-

ated IL-1 responses to LPS in the hippocampus and

cortex at adulthood.

Cerebral Palsy

Important primary risk factors for cerebral palsy,

including preterm birth and small birth weight, can

be a result of, or induced by, maternal infection. Epi-

demiological evidence has also suggested that mater-

nal infection during the first and second trimesters,

intrauterine infections (such as chorioamnionitis) dur-

ing the third trimester and labor, and neonatal infec-

tions (such as meningitis) are significant risk factors

for cerebral palsy (Nelson and Willoughby, 2000;

Reddihough and Collins, 2003; Nelson, 2008). Thus,

in contrast to models for autism and schizophrenia,

common animal models of prenatal immune activa-

tion for cerebral palsy involve direct intrauterine

administration of LPS which often, in turn, induce

preterm births (Bell and Hallenbeck, 2002). Systemic

models of gestational LPS administration are also

used (Cai et al., 2000; Paintlia et al., 2004).

Deep, focused and diffuse white matter injury

(periventricular leukomalacia, PVL) and damage to

the cortex, basal ganglia, and thalamus are the most

common markers of cerebral palsy-specific brain

damage (van de Bor et al., 1989; Folkerth, 2005). In a

preterm model, sheep were administered intravenous

injections of LPS over 5 days during late gestation.

This treatment regime resulted in a brain pathology

characterized by diffuse subcortical damage and PVL

(Duncan et al., 2002). In a rat model, intrauterine
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administration of LPS at E15 resulted in early cortical

cell death and dysmyelination, similar to PVL

lesions, at 3 weeks of age in the offspring (Bell and

Hallenbeck, 2002). A preterm model of intrauterine

LPS administration in mouse caused significant fetal

brain injury (Burd et al., 2010; Ernst et al., 2010) as

did a similar \to term" model (Elovitz et al., 2011).

Diffuse PVL lesions in cerebral palsy brains are

initiated by loss of developing oligodendrocytes and

subsequent hypomyelination, which is mediated, in

part, by free radical-induced oxidative stress, gluta-

mate toxicity, and circulating cytokines (Kinney and

Back, 1998). Administration of LPS to rats during

late gestation caused increases in markers of oxida-

tive stress in the fetal brain (Paintlia et al., 2008) and

in glutamate-induced hydroxyl radical release in the

striatum of P14 offspring (Cambonie et al., 2004), to-

gether with an increase in circulating proinflamma-

tory cytokines in the maternal and fetal compartments

(Cai et al., 2000; Paintlia et al., 2004). Moreover, sys-

temic LPS administration at E18 has been shown to

cause loss of developing oligodendrocytes in fetal

brain, as well as decreases in oligodendrocyte number

and expression of myelin-related proteins in the post-

natal brain (Paintlia et al., 2008). In a somewhat dif-

ferent model of white matter injury, using direct

injection of LPS into the neonatal rat corpus cal-

losum, decreases in preoligodendrocytes and hypo-

myelination have also been observed, together with

increases in callosal radial diffusivity measured with

in vivo magnetic resonance imaging (Pang et al.,

2003; Lodygensky et al., 2010).

Importantly, hypoxia-ischemia is one of the causes

of PVL, and a number of studies using rodent models

have shown that LPS exposure exacerbates detrimen-

tal effects of hypoxia on developing brain (Eklind

et al., 2005; Wang et al., 2009b). Hypoxia-ischemia

is known to directly contribute to the loss of oligo-

dendrocytes in PVL lesions (Levison et al., 2001).

Thus, as hypoxia-ischemia is also a risk factor for

cerebral palsy, it is likely that the combination of

prenatal inflammation and a hypoxic event during

gestation would result in a significant increase in oli-

godendrocyte loss in the fetal brain, increasing the

likelihood of cerebral palsy. Preterm birth is another

risk factor for cerebral palsy, and there is a strong asso-

ciation between in utero infection during pregnancy

and preterm birth (Romero et al., 2007b). Prenatal

administration of LPS or live bacteria in a variety of

animal species are well-established models of preterm

birth, and there is a rich literature describing effects of

prenatal infection on fetal physiology and well-being

from this perspective (Edwards and Tan, 2006; Kemp

et al., 2010; Adams Waldorf et al., 2011).

Epilepsy and Acute Seizures

Postnatal rodent models have been used to investigate

the role of immune activation in the generation of

acute seizures and epilepsy. Acute seizures can de-

velop as a proximate consequence of both bacterial

and viral CNS infections. Mechanisms involved in the

generation of such seizures have been investigated in

models of bacterial meningitis involving intracisternal

injection of group B streptococcus in infant rats (Kim

et al., 1995; Kolarova et al., 2003) and models of viral

CNS infection involving intracisternal administration

of Theiler’s murine encephalomyelitis virus in young

mice (Libbey and Fujinami, 2011). The notion that

inflammation can also enhance susceptibility to acute

seizures induced by other agents or enhance CNS dam-

age induced by seizures has been supported by studies

in immature rats indicating that LPS administration

enhances rapid kindling and facilitates acute seizures

or seizure-induced neuronal injury induced by agents

such as lithium-pilocarpine, kainic acid, or glutaric

acid (Auvin et al., 2007, 2010b; Magni et al., 2011).

Several groups of investigators have provided in-

triguing evidence that infection or immune activation

early in postnatal life can lead to long-lasting increased

seizure susceptibility in adulthood. Stewart et al. (2010)

showed that young mice (P28–35) receiving intracister-

nal injection of Theiler’s murine encephalomyelitis vi-

rus developed spontaneous epileptic seizures 2–7

months after the injection. Galic et al. (2008) have dem-

onstrated that rat pups receiving an intraperitoneal injec-

tion of LPS at a critical period in development (P7, P14)

show enhanced convulsant-induced seizure susceptibil-

ity at adulthood. In a similar vein, Galic et al. (2009a)

have shown that intracerebroventricular injection of

poly(I:C) in P14 rat pups also causes increased seizure

susceptibility at adulthood, indicating that early expo-

sure to either bacterial or viral immunogens can contrib-

ute to this lasting susceptibility. Using a somewhat

different approach, Auvin et al. have examined effects

of LPS administration in combination with seizure-

inducing agents such as hyperthermia or lithium-pilocar-

pine in immature rats; these studies showed that pairing

LPS with lithium-pilocarpine resulted in more severe

spontaneous seizures at adulthood compared to lithium-

pilocarpine alone (Auvin et al., 2010a), while the com-

bination of LPS and hyperthermia caused a long-term

reduction in convulsant-induced seizure threshold

compared with hyperthermia alone (Auvin et al., 2009).

Parkinson’s Disease

Interestingly, a subset of studies looking at prenatal

administration of LPS was conducted by researchers

1340 Harvey and Boksa

Developmental Neurobiology



interested in developing a model of Parkinson’s dis-

ease. A single dose of LPS at E12.5 resulted in long-

lasting and progressive dopaminergic cell death and a

lifelong elevation in serum TNF-a (Carvey et al.,

2003). Subsequent articles from the same group of

investigators have replicated these findings, describ-

ing a decrease in dopaminergic cells in the substantia

nigra that is evident at P21 and persists until the ani-

mal is over one year old (Ling et al., 2002, 2006,

2009). These results appear to be in contrast to those

described in the section on \Schizophrenia", in which

prenatal treatment with LPS or poly(I:C) results in an

increase in amphetamine-induced locomotion, a

marker of dopaminergic activity. However, a close

consideration of reported dopamine-associated

changes in models of prenatal immune activation

indicates that, while some researchers report an

increase in dopamine cell numbers or levels of dopa-

mine and its metabolites in various brain regions

(Ozawa et al., 2006; Meyer et al., 2008a,b,c; Winter

et al., 2008), others report decreases (Bakos et al.,

2004; Romero et al., 2007a, 2010). As might be

expected, these changes in dopaminergic parameters

appear to depend on the specific model used, the

stage of pregnancy at which the immunogen was

administered, and on the brain region and postnatal

age examined. So, although schizophrenia researchers

tend to focus on alterations in amphetamine-induced

locomotion as a measure of dopamine dysfunction,

the relationship between behavioral markers of dopa-

mine dysfunction and dopamine biochemistry

remains to be established in these models. The exam-

ple of dopamine offers a good illustration of the diffi-

culty in synthesizing findings on prenatal and early

postnatal inflammation across laboratories, given the

multiplicity of models and outcome measures used by

various researchers.

General CNS Effects

There is epidemiological evidence linking fetal and

early life infections with general cognitive deficits

and CNS abnormalities, as well as alterations in

hypothalamic-pituitary-adrenal (HPA) axis function

and immune regulation (reviewed by Bale et al.,

2010). Researchers have developed animal models of

pre- and postnatal immune activation to explore these

effects, without necessarily specifying a disease

model. A wide number of immunogens are used,

including LPS, as well as specific cytokines and

actual disease strains, such as Borna virus.

In the absence of a specific disease context, gen-

eral effects of immune activation on cognitive per-

formance in later life has been the subject of investi-

gation in studies using, for example, rat models of

prenatal or neonatal exposure to LPS or replicating

E. coli (Bilbo et al., 2005; Harre et al., 2008; Hao

et al., 2010). Since cognitive deficits are also a promi-

nent feature of schizophrenia, effects of prenatal

immune activation on cognition are also reported in

studies focused on this disorder (Ozawa et al., 2006;

Bitanihirwe et al., 2010; Howland et al., 2012; Zhang

et al., 2012).

Animal modeling studies have also provided

strong evidence that neonatal immune challenge can

result in persistent modifications to the HPA axis and

downstream innate immune function, resulting in

altered susceptibility to inflammatory disease (e.g.,

arthritis) later in life (reviewed by Spencer et al.,

2011). However, the implications of this neonatal

immune activation are not limited to the innate

immune system. For example, administration of LPS

during early life can affect the adult response to cere-

bral ischemia in later life (Spencer et al., 2006), a

measure which would, in humans, translate to a lon-

ger recovery period after stroke.

Direct administration of cytokines allows

researchers to create focused models of immune acti-

vation and to observe the overall effects of specific

cytokines on CNS function. In rats, daily subcutane-

ous administration of IL-1a, IL-2, IL-6, TNF-a, and

IFN-c between P2 and P10 resulted in cytokine-spe-

cific behavioral changes (Tohmi et al., 2004). At 3

weeks of age, rats treated with IL-2 displayed

enhanced locomotor and exploratory activity (Tohmi

et al., 2004). At 8 weeks of age, rats treated with IL-

1a exhibited an increase in startle response, a

decrease in PPI, and an increase in social behavior.

Intriguingly, rats treated with IL-6, TNF-a, or IFN-c
showed no behavioral abnormalities. The prenatal

intramuscular turpentine model also appears to have

some degree of cytokine specificity, since only IL-6

is increased in the circulation while production of IL-

1 and TNF-a is confined to the local site of inflamma-

tion (Luheshi et al., 1997). Administration of turpen-

tine to pregnant rats at E15 resulted in a decrease in

PPI, an increase in amphetamine-induced locomo-

tion, prolonged fear conditioning and increased la-

tency in a cued task in the Morris Water Maze as well

as increased tyrosine hydroxylase expression in the

nucleus accumbens of offspring (Aguilar-Valles

et al., 2010; Aguilar-Valles and Luheshi, 2011).

When turpentine was administered at E18, only the

fear conditioning response was altered in the off-

spring (Aguilar-Valles and Luheshi, 2011). Together,

these findings suggest that there are windows of

vulnerability during fetal and neonatal development
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during which an increase in specific cytokines may

produce long lasting changes in dopamine related

biology and behavior.

Models using disease strains of viruses have a two-

fold advantage; while they can be used to generally

model and explore the ramifications of early immune

activation, they can also help us understand shared

pathways between seemingly unrelated diseases. For

example, neonatal infection with Borna disease virus

originated as a model to examine effects of viral

infection on brain development. Borna disease virus

is a single-stranded, negative sense RNA virus known

to cause Borna disease. With increasing insight into

the neonatal Borna virus model, researchers observed

that many of the downstream changes were relevant

to features of autism, as well as schizophrenia (Hornig

and Lipkin, 2001), although there is no epidemiologi-

cal evidence to suggest that autism or schizophrenia

is caused by actual exposure to Borna virus. Neonatal

exposure results in animals that are stunted in growth,

have altered sleep-wake cycles, decreased PPI,

decreased play behavior, and altered developmental

progression of motor skills (Hornig and Lipkin,

2001). As such, this model provides an intriguing al-

ternative for researchers who are interested in study-

ing the effects of neonatal viral infection.

IS EARLY LIFE INFECTION A DISEASE-
SPECIFIC RISK FACTOR OR A GENERAL
VULNERABILITY FACTOR?
IMPLICATIONS FOR ANIMAL MODELS

As we have seen with prenatal infection, the line of

reasoning underlying an epidemiology-based

approach to develop animal models of disease pro-

ceeds (roughly) as follows. Begin with a disease of

interest and identify a risk factor that is associated

with that disease, develop an animal model of the risk

factor, and attempt to determine if the animal model

mimics the disease pathology seen in humans. How-

ever, difficulties with this approach may arise

because the risk factor identified for the disease of in-

terest is also a risk factor for a number of other dis-

eases. Therefore, when modeling that risk factor in an

animal, you might expect to observe pathology

related to several different diseases. As an example,

both schizophrenia and autism are associated with

prenatal infection as a risk factor but it is difficult to

envisage how the same risk factor will lead to one of

these disorders versus the other. As a corollary then,

it is difficult to determine if a specific animal model

of prenatal immune activation is relevant to schizo-

phrenia or autism or both. To move forward, we may

consider two possibilities. The first is that we believe

we will be able to create separate animal models of

these disorders using the same risk factor, but that

they will depend on identifying a specific immunogen

(or class or dose of immunogen) at a specific critical

time point of administration in order to lead to either

schizophrenia-like or autism-like pathology. The sec-

ond is that we would consider prenatal immune acti-

vation as a general vulnerability factor for both schiz-

ophrenia and autism, which requires other factors to

be present, either as genetic or other environmental

insults, in order to develop the disease. Differentiat-

ing between these two possibilities allows us to iden-

tify two distinct experimental plans of action.

Early Life Infection as a Disease-Specific
Risk Factor

A major difficulty in formulating a synthesis from the

current literature on the effects of prenatal or post-

natal infection on neurodevelopment arises because

of the wide range of models used in separate experi-

ments by different groups of investigators (Boksa,

2010). The models differ with respect to the immuno-

gen used, the dose and number of administrations of

immunogen, the time during gestation or postnatal

life when immunogen is administered, the postnatal

age and sex of offspring examined, and the type of

outcome measure quantified.

Working on the idea that exposure to specific

immunogens at specific time points of gestation will

predispose toward different diseases, e.g., schizophre-

nia versus autism, fundamental information describ-

ing the effects of multiple immunogens, at multiple

time points during gestation, on the same outcome

measures, within the same study, is needed (see, for

example, Meyer et al., 2006b; Fortier et al., 2007;

Meyer et al., 2008c; Harvey and Boksa, 2012). These

types of experiments will help to discern if there are

differing effects of different immunogens or different

doses of immunogens and whether critical time win-

dows of administration are required to observe differ-

ential outcomes. These results will also help to

emphasize which specific parameters of prenatal

immune activation are essential to enable other inves-

tigators to replicate observed effects—as in many

fields of research, independent replication of results is

not a strong feature of the literature on prenatal infec-

tion and neurodevelopment. [A notable exception is

the consistent deficits in PPI following prenatal

poly(I:C), LPS, or influenza, which have been observed

by numerous independent laboratories, see the section

on \Schizophrenia".] Conversely, it will also be im-

portant to determine if a single protocol of immunogen
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administration gives rise to outcome measures specif-

ically related to one disorder (e.g., schizophrenia) but

not to others (e.g., autism). This would require that

researchers interested in a particular disorder not only

quantify outcome measures related to their disorder

of interest but also examine a wider range of CNS

outcome measures in order to examine the specificity

of effects in their model. These approaches should

help the field to form consensus regarding some of

the most integral questions in the prenatal inflamma-

tion literature, for example, how does prenatal infec-

tion change dopamine and other neurotransmitter bio-

chemistry, and do multiple behavioral phenotypes

converge, or not, within the same model?

A further potentially fruitful avenue of investigation

for researchers interested in neurodevelopmental disor-

ders would be to consider effects of prenatal infection

on systems other than the CNS that could influence

their disease of interest. For example, there is human

epidemiological evidence suggesting an association

between exposure to measles during gestation and the

onset of Crohn’s disease/inflammatory bowel disease

in offspring in later life (Ekbom et al., 1994, 1996;

Nielsen et al., 1998; Pardi et al., 1999). Hence, it has

been suggested that prenatal infection may be a risk

factor for both inflammatory bowel disease and autism,

and in fact, there is evidence that a subset of autistic

children experience gastrointestinal abnormalities,

which could be indicative of a decrease in mucosal in-

tegrity (Levy et al., 2007; de Magistris et al., 2010).

Recent work has highlighted that the microbiota of the

gut can play an important role in CNS function and

reactivity (Neufeld and Foster, 2009). However, to

date, few animal models of prenatal infection have

considered the role of the gut. In the rat, neonatal ex-

posure to LPS has been shown to result in a more

severe response to induced experimental colitis

(Spencer et al., 2007). No studies investigating effects

of prenatal infection on neurodevelopment have

included examination of the gut. Although this

research is ongoing in humans, the established models

of prenatal immune activation would provide an

obvious and accessible model in which to test the rela-

tionship between gut microbiota and behaviors rele-

vant to autism. One could envisage how investigations

of this sort might conceivably lead to a description of

specific situations in which prenatal infection could

lead to autism, as opposed to other CNS disorders.

Early Life Infection as a General
Vulnerability Factor

If we consider that prenatal infection is a general vul-

nerability factor conferring increased susceptibility to

a range of different neurodevelopmental disorders,

then it is more important than ever to create multifac-

torial models, combining either multiple environmen-

tal risk factors or an environmental risk factor on a

background of genetic risk. This approach has been

used by groups examining the interactive effects of

prenatal immune activation together with exposure to

environmental neurotoxins (Ling et al., 2004a,b,

2006) or effects of prenatal immune activation in

interaction with genes implicated in the etiology of

disorders such as schizophrenia and Parkinson’s dis-

ease (Granholm et al., 2010; Ibi et al., 2010; Ehninger

et al., 2012; Vuillermot et al., 2012). In theory, such

investigations may allow us to identify which combi-

nations of etiological factors are more likely to result

in one particular disorder (e.g., schizophrenia) versus

another (e.g., autism). Of course, this type of multi-

factorial animal model adds another layer of com-

plexity onto an already complicated prenatal infection

model and presents further challenges in attempts to

summarize how prenatal infection affects neurodevel-

opment using a synthesis of findings from various

laboratories.

CONCLUDING REMARKS

Prenatal and early postnatal infections have been

associated with increased risk for a number of neuro-

developmental disorders. Animal models of prenatal

and early postnatal immune activation have contrib-

uted substantially toward indicating that this associa-

tion may be causal. However, for the most part, ani-

mal models have not yet shed light on the question of

which specific conditions are required in order for

early life infection to contribute to development of

one particular disorder as opposed to another (e.g.,

schizophrenia or autism?). We have discussed the di-

chotomy that exists between the belief that a specific

CNS disorder resulting from early life infection may

be determined by exposure to a particular class of

pathogen at a critical time point in fetal or postnatal

development, and the theory that the combination of

early life infection with specific additional genetic

and environmental insults will determine the neuro-

developmental outcome. In fact, these two ideas need

not be thought of as mutually exclusive. One can

readily envisage the scenario where the actual etiol-

ogy of a complex neurodevelopmental disorder like

schizophrenia or autism might require both exposures

to a specific infection at a specific time in early devel-

opment in combination with further environmental

and genetic \hits." A consideration of these two

approaches will be useful when designing robust and
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reproducible animal studies that can be integrated

into our current knowledge and contribute to the pro-

gression of the prenatal and postnatal immune activa-

tion literature.
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