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Knowledge translation, as defined by the Canadian Institute of Health Research, is defined
as the exchange, synthesis, and ethically sound application of knowledge—within a complex
systemof interactions among researchers andusers—to accelerate the capture of the benefits
of research through improved health, more effective services and products, and a strength-
ened healthcare system. The requirement for this to occur lies in the ability to continue to
determinemechanistic actions at the molecular level, to understand how they fit at the in vitro
and in vivo levels, and for disease states, to determine their safety, efficacy, and long-term
potential at the preclinical animal model level. In this regard, particularly as it relates to long-
term disabilities such as cerebral palsy that begin in utero, but only express their full effect in
adulthood, animal models must be used to understand and rapidly evaluate mechanisms of
injury and therapeutic interventions. In this review, we hope to provide the reader with a
background of animal data upon which therapeutic interventions for the prevention and
treatment of cerebral palsy, benefit this community, and increasingly do so in the future.
Semin Pediatr Neurol 20:75-83 C 2013 Elsevier Inc. All rights reserved.
Cerebral palsy (CP) is defined as a group of permanent
disorders of the development of movement and posture,

causing activity limitations, attributed to non-progressive
disturbances that occurred in the developing fetal or infant
brain…often accompanied by disturbances of sensation,
perception, cognition, communication, and behaviour—epi-
lepsy and musculoskeletal problems.1 CP occurs in 2-3 of
1000 term births, increasing dramatically by up to 10-fold to
22 of 1000 in infants born prematurely.2-4 In a population-
based Canadian study conducted on 243 children with CP,
Shevell et al.5,6 showed that half of the children are affected
with either spastic quadriplegia (35%) or diplegia (21%), with
as many as 31% displaying spastic hemiplegia, and the
remaining being expressed as dyskinetic (7%), ataxic-
hypotonic (4%), and other subtypes (2%). In addition to these
motoric disabilities, it is now clearly evident that more than
45%of these children, particularly in themore severely affected
groups have comorbidities including intellectual disability,
behavioral abnormalities, sensory deficits, and seizures or
epilepsy.5,6 Estimates regarding the cost per child affected with
ont matter & 2013 Elsevier Inc. All rights reserved.
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CP exceed $1million and clearly do not include the emotional,
physical, and economic burden placed on families.7 In the
United States, the total amount required for children with CP
was $11.5 billion in 2003.8

Animal research in the area of ischemia or hypoxia-ischemia
has been ongoing in an aggressive fashion for a number of
decades, but it has faced challengeswhen being translated from
the animal model to the human.9-11 Many pitfalls have been
identified, particularly in the adult models of stroke, that
include, but are not exclusive to, the following: whether the
animal model truly reflects human stroke, the complex
molecular nature of the evolution of stroke or hypoxia-
ischemia, the lack of long-term follow-up in stroke models,
the simplicity of the species (rodent, pig, or sheep) compared
with the human counterpart, and the statistical approach to
animal modeling of stroke and stroke outcome. In the case
of the human newborn, and the causes of CP, this paradigm
becomes even more complex.
CP is caused by a host of etiologies that result in a pattern of

developmental disabilities, arising from the time of birth. In the
context of the current series of papers, we are largely referring
to CP that arises as the final common pathway of a cardiovas-
cular or cerebrovascular compromise to the fetus, before
delivery. Literature in the last 20 years has shifted our thinking
to show that a hypoxic-ischemic insult to the brain most often
arises during the course of pregnancy and is the result of an
antepartum insult.12-14 Indeed, these studies suggest that in
80%-90% of children who have CP, as the result of a hypoxic-
ischemic event, it is likely due to antepartum insults, or the
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Figure 1 Evolution of brain injury based on gestational age. Periventricular leukomalacia during early third trimester 24-32
weeks). Status Marmoratus, parasagittal infarcts, and neonatal stroke occurring during late preterm and term gestation.
(Color version of figure is available online.)

A. Nguyen, E.A. Armstrong, and J.Y. Yager76
combination of an antepartum insult with a “secondary”
intrapartum asphyxial challenge. Further complicating the
therapeutic approach to CP is the fact that the immature brain
is rapidly developing, such that vulnerable regions of the brain
evolve, particularly during the last trimester to term birth.
Hence, injuries in the premature baby, or those that appear to
occur during the last trimester, are different from those that
occur during the latter part of gestation (Fig. 1).
Patterns of brain injury in the immature brain, and hence the

categorization of their CP, is dependent on the timing of injury
during gestation, which in turn determines the intrinsic
vulnerability of the vascular pattern, and the cell line affected.
Therefore, insults that occur during the gestational ages of
approximately 24-32 weeks result largely in 2 patterns of
injury. The first is a perinatal stroke that occurs either due to
a periventricular venous infarction or due to presumed
perinatal ischemic stroke.15-19 Both these latter insults are
responsible for more than 90% of children with hemiplegic
CP, which is in turn responsible for almost a third of all CP.20

Most cases of spastic diplegia, quadriplegia, and those with
dyskinetic CP arise predominantly from antepartum insults
and are the result of a “global” insult to the fetal brain. Early
studies in the rhesusmonkey21,22 aswell as in the fetal sheep23-
25 showed that “near-complete” interruption of placental blood
flow resulted in a deep gray matter or basal ganglia pattern of
brain injury in the term newborn, whereas partial or incom-
plete repetitive ischemia caused lesions that were more cortical
watershed in nature. These latter patterns have been clearly
verified in humans by neuroimaging.26,27,28

In the premature infant, patterns of brain injury are depend-
ent on both the paucity of vascular supply to the regions of the
brain adjacent to the lateral ventricles (periventricular)29 and
the intrinsic vulnerability of the preoligodendrocyte.30,31

Therefore, with the reduction in blood flow to the
periventricular region, the immature oligodendrocyte appears
targeted to the effects of the surrounding neurotoxins (gluta-
mate) because of the inability of immature astrocytes to fully
resorb the toxin.32 In addition, the developing glial infra-
structure does not yet have the capacity to fully provide
antioxidant neuroprotection. 33-35 The pathophysiology relies
on a combination of reduced cerebral blood flow whether
during the preterm period, leading to white matter injury, or
term infant, producing global injury, depletion of energy
stores, cell-specific sensitivity such as in the preoligodendro-
cyte, and lastly, with or without the presence of an infection
resulting in an inflammatory response. Thus, it is important to
develop an animal model that is truly representative of the
pathophysiology leading to CP. Ultimately, the goals for
developing animal models of disease (CP) are for improving
the outcomes and lives of the children and families we serve.
Given the variable patterns of brain injury that the fetal

and neonatal brain are susceptible to and the complex
interplay between the developing brain and its regional
vulnerability to injury, it is not surprising that achieving
therapeutic interventions is often seen as a moving target.
In spite of this, at the cellular level, certain basic pathways
are recognized as occurring, to greater or lesser degrees,
in all types of the previously described injury subtypes.
Hence, it is clearly recognized that with the curtailment of
blood flow and the delivery of oxygen and glucose to the
brain, cellular energy failure results secondary to the
depletion of phosphate stores. This, in turn causes
disruption of the NaþKþ-ATPase pump, resulting in the
release and accumulation of the excitatory amino acid
glutamate into the synaptic cleft. The latter disrupts the
cytoskeleton leading to a loss of membrane integrity and
cellular necrosis. Furthermore, increases in glutamate
and loss of the membrane pump result in an increase in
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intracellular calcium, leading to a perpetuating cycle of
free radical production and a prolonged inflammatory
response. Ultimately, both damage the DNA and cell
membrane integrity via lipid peroxidation and result in a
protracted cell death by apoptosis.36-38

In addition to the aforementioned complexities, it has
further come to light that fetal infection or inflammation
contributes significantly to the process of fetal or newborn
brain injury. Verma et al.39 demonstrated a significant corre-
lation between mothers with chorioamnionitis and low-birth-
weight babies affected with PVL. Wheater et al.40 further
demonstrated that the risk of development of CP was 4 times
greater in infants who were exposed to mothers with an
infection compared with those that were not. Furthermore,
Wu and colleagues showed chorioamnionitis as an independ-
ent risk factor in both preterm and term infants leading to
development of CP, supporting the role of inflammation as
a significant risk factor associated with brain injury.41,42 More
recently, Miller's group demonstrated a close correlation
between the clinical and biochemical signs of fetal inflamma-
tion and outcome, suggesting that the risk of CP increasedwith
mounting evidence of infection.43,44

Despite the complexity and challenges in developing
therapies for perinatal brain injury resulting from a hypoxic-
ischemic insult, recent years have demonstrated signi-
ficant success and therapeutic advancement. The role of
animal models and the provision of preclinical evidence in
this journey are substantial, with the future holding even
greater promise.
Animal Models
Early studies utilized monkeys45 and sheep24,25,46 in the
depiction of perinatal brain injury, in both the term and
preterm fetus. These models helped to outline the pattern of
injury and set the stage for understanding the differences
between injury in the premature and mature infant. The rising
expense of these models led to the development of smaller
animal models, and the focus of most studies was on rodents.
Vannucci and colleagues developed the immature rodent
model as a modification of the Levine47 adult stroke prepara-
tion.48,49 In this model, a 7-postnatal day, nonprecocial, rat
pup is used as a correlate to the late preterm and term infant
(36-40 weeks gestation), though others have argued that a
more accurate age would be at 10-postnatal days, based on the
maturity of the brain amino acid and enzyme profiles.50 The
common carotid artery is ligated permanently, and the animal
is exposed to hypoxia (usually 8%) for varying durations of 90-
180 minutes. The result is a focal area of injury ranging from
selective neuronal necrosis to frank infarction in the area of the
middle cerebral artery, its severity is dependent on the duration
of accompanying hypoxia. Although appearing as a perinatal
ischemic stroke, the pathophysiology of injury has been well
defined, and as such, has been recognized as being strongly
representative of the cellular mechanisms underlying perinatal
hypoxic-ischemic brain injury.51-58 In recent years, several
other models have been developed that more specifically
depict a “global ischemic” insult and hence, presumably, are
more representative of the diplegic and quadriplegic spastic
cerebral palsies. In particular, Derrick et al. (2007) have
developed a model in the rabbit kit that causes a global
placental ischemic insult by occluding the descending aorta for
a brief period and then allowing reperfusion. Phenotypically,
the rabbit kits exhibit spastic fore and hind limb features. The
challenges with this model are the precocial nature of the
rabbit59,60 and the inability to follow up these animals for long
term. Hence the difficulty in evaluating therapeutic efficacy
from a long-term recovery perspective.61 Studies by the Lane
group, and adapted by our own group, have recently utilized
a model of bilateral uterine ligation thereby interrupting
placental blood flow. The result is a model of placental
insufficiency, resulting in growth retardation in the newborn
rat pup and fetal brain abnormalities in myelination and
hippocampal cell count. Behaviorally, the animals show signs
of delays in early developmental reflexes as well as permanent
abnormalities of motor and cognition.62-64 Still others have
developed models that have incorporated the role of fetal
inflammation or chorioamnionitis as a significant risk factor in
the development of CP, the treatment of which may provide a
means of prevention.65,66 Larger animal models developed for
the purposes of investigating perinatal hypoxic-ischemic
insults include the piglet and the sheep, both of which are
actively utilized.67,68 Not surprisingly, these latter models
provide a tremendous window into the pathophysiology and
mechanisms of brain injury, but are less well suited for long-
term recovery. As in most animal models of human-related
diseases, there is none that is ideal, and rather our knowledge
and information must grow from the application of the right
model for the circumstances.69,70

From the perspective of the utilization of animal models as a
means of developing preclinical data to move forward with
clinical trials, several criteria would need to ideally be met.
Models of human disease should reflect the human with
respect to the following: (1) development (anatomically and
biochemically), (2) mechanisms of injury, and (3) pathologic
and long-term behavioral phenotype. Few animal models are
able to meet all of these criteria. Nonetheless, in the world of
perinatal brain injury, and as it relates to the development of
therapeutic interventions, the rodent model by Rice et al.48 has
provided the foundation for much of the preclinical data
to date.
Evidence from Animal Models
for Therapeutic Intervention
The approach to therapeutic interventions has largely focused
on rescue therapies. That is, therapies that target damaged
tissue in recovery and are administered in the time frame
shortly after the insult has occurred.Moreover, these trials have
further focused on the term infant with evidence of perinatal
asphyxia, with little current work addressing the needs of the
preterm. However, the newborn brain injury is often difficult
to time, it most often happens before labor and delivery and
without an identified etiology.71 Hence, to address this
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multifaceted potential for injury, the more recent thinking has
broadened and is now inclusive of interventions that include
the following: (1) prevention, (2) rescue, (3) rehabilitation, and
(4) regeneration. Clearly, animalmodels play an important role
in the development of all 4 of these approaches.
The following paragraphs address some key aspects of how

evidence from animal model preclinical work has addressed,
and in some cases moved forward to, successful clinical trials
and alterations of standard of care. Recent publications have
further outlined several important therapeutic advances that
have the potential for advancement to clinical trial and we
would recommend them as further review.72,73 Though not
meant to be an exhaustive review, we hope to highlight
important progress that has been made in the field of animal
model research and point out the tremendous and growing
role this arena has to play in future endeavors regarding the
treatment of perinatal brain injury.
Prevention
With the increasing incidence of premature birth and the
recognition that most of the risk factors resulting in CP occur
before labor and delivery, a new focus for therapeutic
intervention has been treatment of the pregnant mother
in an attempt to prevent injury from occurring. The purpose
of these approaches is simple and similar to the approach taken
by the use of folate for the prevention of spinal cord
dysraphism. Hence, the concept is to enhance the endoge-
nous capability of the fetus to withstand or circumvent an
insult, often owing to the fact that the immature brain is
relatively deficient in enzymes or enzyme systems that reduce
injury secondary to inflammatory or oxidant-mediated
cell death.
Tetrahydrobiopterin (BH4) is a biogenic amine normally

found in small concentrations in the fetal brain. It acts as a
cofactor in the production of dopamine and nitric oxide
synthase and is therefore believed to have a role in the
prevention of oxidant stress.74,75 Moreover, the addition of
BH4, or its precursor, enhanced survival in nigral slice cell
cultures. Supplementing the diet of pregnant rabbits in late
gestation with BH4 or its precursor, sepiapterin, prevented the
behavioral deficits seen in newborn rabbit kits following an
insult causing prolonged placental insufficiency.76

Others have looked at the constituents of food. Resveratrol
(RVT) is a polyphenol found in a number of foods, including
red wine, peanuts, grapes, and others. Karalis et al. (2011)
utilized the Vannucci 7-day rat pup model of unilateral
common carotid artery ligation and treated their experimental
group with RVT. They showed a significant reduction in
behavioral deficits, as well as neuropathologic damage of both
gray and white matter structures in the treatment group
compared with controls.77 Holtzman and colleagues showed
that high and medium doses of RVT provided by intra-
peritoneal injections into rat pups before a hypoxic-ischemic
injury reduced the brain damage associated with that injury,
but that RVT injection after the injury had no beneficial
effect.78,79 Others have determined the effects of grape seed
extract on the functional and pathologic outcomes of a
hypoxic-ischemic insult in the 7-postnatal-day rat pup. Feng
et al.80 intraperitoneally injected 50 mg/kg of grape seed extract
before induction of hypoxia and then provided additional
doses following hypoxia in a multidose regime. In a second
study, the authors looked at the effects of dosing at 1 and
3 hours following the hypoxic-ischemic insult.81 In both study
paradigms, the authors found significant improvement in
outcome, behaviorally and pathologically. Moreover, the use
of grape seed extract in this manner reduced evidence of lipid
peroxidation and hence, likely also decreased oxidant stress.
Pomegranate juice, another polyphenol, has also been exam-
ined as a preventive antepartum agent in the newborn rodent
model. In a series of studies, pomegranate juice was
added to the water of dams of rat pups who then were fed
by the dam. At the 7-postnatal day, a typical hypoxia-ischemia
injury was induced in the rat pups and neuropathologic
assessment was done approximately 2 weeks later. As with
other studies, the pomegranate juice provided before the
injury, conferred neuroprotection and there was a reduction
in apoptotic cell death, as determined by measurement of
caspase-3 and calpain.
Our own laboratory has also determined the effects of

natural health products in the formof broccoli sprouts. In early
studies, pregnant rodent dams were fed broccoli sprouts at
a dose of 200 mg/kg per day during the last trimester
of pregnancy and throughout the period of suckling to
postnatal day 14. Rodent dams underwent bilateral uterine
artery ligation (BUAL) on E20, with spontaneous vaginal
delivery occurring on E23. BUAL in this fashion produces
placental insufficiency and fetal growth restriction resulting
in injury to the hippocampus and white matter as shown in
our lab (unpublished data) and by Lane and colleagues.63,64

During the course of development, from PD3-PD21, early
reflex behaviors were determined, after which the pups were
sacrificed and assessed neuropathologically for brain injury.
The data clearly indicate that the dietary supplementation of
pregnant dams with broccoli sprouts prevents injury and
improves functional outcome. Others have determined that
the presumedmechanismof this beneficial effect is through the
enhancement of phase II enzymes, the promotion of oxidant
scavengers, and a powerful anti-inflammatory effect.82-84

The BUAL model has also been utilized by the Watanbe
group of investigators to determine the potential benefit of
melatonin as a prophylactic supplement given during preg-
nancy.85 Melatonin is a naturally occurring pituitary hormone
that, in previous experiments from this lab, has shown to be a
potent antioxidant. Pregnant dams were fed a solution of
20 ug/ml of melatonin dissolved in water throughout their
pregnancy. On E16, the uterine arteries were ligated for 30
minutes and then reperfusion was allowed to occur. The pups
were delivered vaginally and killed on PD1. Examination
of mitochondrial respiration, hippocampal cell death,
and Thiobarbituric-Acid Reaction, as an indication of lipid
peroxidation, revealed a significant beneficial effect of the
melatonin supplementation. Unfortunately, long-term studies
have not been accomplished to determine the permanence of
this benefit.
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Rescue
Rescue therapy refers to the implementation of an intervention
in the immediate aftermath of an injury. Regarding this, one
cannot discuss rescue therapy without the recognition that
mild to moderate hypothermia has become the standard of
care in the intensive care nurseries of the developed world. A
number of systematic reviews on the subject of hypothermia
have consistently shown a beneficial effect86,87 under the
following conditions and eligibility: (1) A diagnosis of acute
perinatal asphyxia as defined clinically and physiologically by
the presence of a neonatal encephalopathy and the presence of
a cord pH o7.1; (2) term infant of 36 weeks gestation or
greater; (3) hypothermia to 33.51Cwithin 6 hours of birth and
generally lasting for 72 hours, and (4) the absence of
complicating features such as congenital anomalies, sepsis,
and cerebral malformations. Both whole-body cooling and
selective head cooling have been shown to be effective, though
controversy remains regarding whether there may be some
benefit of one over the other, depending on the region of
injury. Hence, some speculation exists that whole-body cool-
ingmay provide greater benefit for an acute near-total asphyxia
event, resulting in basal ganglia injury, whereas selective head
cooling may provide greater protection to newborns exposed
to a prolonged partial insult, with a predominance of cortical
injury. Results have further indicated that the benefit is larger
in, though not exclusively confined to, infants with amoderate
degree of encephalopathy, whereas those with a severe
encephalopathy tend to show less benefit. In a study on
childhood outcomes after hypothermia, it was shown that at
longer-term follow-up at 6-7 years of age of the 97 children in
the hypothermia group and the 93 children in the control
group, death or an IQ score below 70 was observed in 46
(47%) and 58 (62%) children, respectively (P ¼ 0.06); death
was observed in 27 (28%) and 41 (44%), respectively (P ¼
0.04); and death or severe disability was observed in 38 (41%)
and 53 (60%), respectively (P ¼ 0.03). Other outcome data
indicated that moderate or severe disability was observed in
35% and 38%, respectively (P ¼ 0.87). Attention-executive
dysfunction occurred in 4% and 13%, respectively, of children
receiving hypothermia and those receiving usual care (P ¼
0.19), and visuospatial dysfunction occurred in 4% and 3%,
respectively (P ¼ 0.80). They concluded that the rate of the
combined end point of death or an IQ score of less than 70 at
6-7 years of age was lower among children undergoing whole-
body hypothermia than among those undergoing usual care,
but the differenceswere not significant.However, hypothermia
resulted in lower death rates and did not increase rates of severe
disability among survivors.88

Preclinical animal work was at the heart of the rapid
translation of postischemic hypothermia as a neuropro-
tectant to clinical trial and subsequently to standard of
care in most neonatal intensive care units (NICUs). Work
done by Richard S. Young was perhaps the first to show
the benefits of mild hypothermia in the newborn rat
pup.89 Later studies in adult and newborn stroke models
of intraischemic hypothermia showed the powerful effect
even a 21C-31C decrease in body temperature had on
preserving the brain.90,91 Later studies were of course
extended to postischemic hypothermia, and these too
confirmed its benefit. 92,93 Subsequent clinical trials
developed rapidly, throughout N. America, Europe, and
Australia/New Zealand, which led to the implementation
of this therapy as standard.
Current studies in the field of rescue therapy must include

hypothermia as a control given its prevalence in the clinical
world.Ongoing animal studies have now focused on questions
related to how long one can delay hypothermia and still
maintain a beneficial effect, and the concept of hypothermia
plus the addition of pharmaceutical additives to enhance
current benefits. With respect to the former, Sirimanne
et al.94 using their instrumented sheep model showed that
delaying hypothermia for up to 5.5 hours following umbilical
cord compression was only partially effective in protecting the
brain from injury and that there may be some regional
variability in this regard. Delaying hypothermia until after
seizures occurred was not at all protective when compared
with normothermic controls. In the Vannucci rat model of
postischemic hypothermia, delayed cooling for up to 2 hours,
but not up to 5 hours, was effective in providing neuro-
protection, as evidenced by the pathologic scoring.95 These
findings were essentially confirmed by Thoresen et al.96 in the
piglet and rat models.
A number of studies have recently provided preclinical

evidence for the combination of hypothermia with other
pharmaceutical interventions as additive therapy. Several
anticonvulsant medications have been studied. When pheno-
barbital was given intraperitoneally to 7-day PD rat pups,
15 minutes after a hypoxic-ischemic insult, and followed by
postischemic hypothermia, the combined effects of phenobar-
bital and hypothermia were greater than either one alone, in
both short- and long-term functional and pathologic out-
comes.97 A retrospective study of newborns who had experi-
enced a perinatal asphyxia event and received both
phenobarbital and hypothermia during the course of their
recovery did not, however, confirm the additive beneficial
effects of phenobarbital.98 This same group also studied the
role of topiramate in conjunction with hypothermia. Neither
delayed postischemic hypothermia for 3 hours, nor was
topiramate alone neuroprotective. The combination, however,
improved pathologic and behavioral outcomes when com-
pared with control.99 Whether the effect of the medication
is because of an effect on the underlying pathogenetic
mechanisms of injury in combination with hypothermia or
simply the effect of treating seizures remains a question. Our
laboratory has shown that seizures complicating a hypoxic-
ischemic injury can exacerbate that injury.100 We have also
shown that these seizures are associated with relative hyper-
thermia, and preventing this increase in temperature, by
cooling, results in an improved long-term pathologic out-
come.101 The findings certainly suggest a role for seizure
control and substantiate the logic of combining anticonvulsant
therapy with hypothermia. The question remains however, as
to whether, clinically, there will be an additive effect.
Other medications have been added to postischemic hypo-

thermia in preclinical animal models, all using the 7-day
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postnatal Vannucci model.102 N-Acetylcysteine, a potent anti-
inflammatory agent, has been shown to be protective of the
newborn brain, and in combination with hypothermia, it
reduces infarct volume and damage to white matter as
evidenced by quantitative measurement of myelin basic
protein. Unfortunately, this study only looked at the outcome
at 48 hours and therefore is not long term enough to support
clinical trials.103 Most prominent among those is the work of
Thoresen's group and the combination of Xenon with hypo-
thermia for additional neuroprotection.104 In their studies,
both immediate or delayed use of Xenon gas, as an anesthetic,
in combination with hypothermia for 3 hours, following a
hypoxic-ischemic insult in the 7-day rat pup showed signifi-
cantly improved outcomes over either treatment alone. Xenon
has been shown to be a potent NMDA blocker and may also
have additional beneficial effects, but is quite expensive and
requires the presence of an anesthetist under current standards.
Nonetheless, studies by this group have shown that short term
use of Xenon is safe, and therefore may obviate these potential
obstructions. Clinical trials are currently underway in Europe
(personal communication).
Finally, there has been very strong preclinical evidence

regarding the neuroprotective effects of erythropoietin (EPO)
in the newborn. EPO stimulates red blood cell production and
has been used for this purpose in many NICUs. Moreover,
animal studies in the previously described rodent models of
hypoxia-ischemia have shown its potential as an agent that can
reduce brain damage. Unfortunately, the recent publications
by 2 laboratories, which combined hypothermia with EPO,
did not show benefit.105,106
Rehabilitation
Constraint-induced therapy is increasingly being utilized
following injury for the benefit of improved upper limb
mobility and has been reviewed by Andersen et al.111 Using
the unilateral ligation model in mice, Rha et al. (2011)
subjected the animals to either control recovery, environ-
mental-enriched recovery, or a combination of constraint and
environmental enrichment. These authors found improved
functional outcome and neurogenesis in the subplate neu-
rons, 4 weeks after recovery in the group receiving the
combination therapy, compared with either therapy alone.
This is one of the only studies to have shown an improvement
using constraint in an animal model of newborn stroke.107

Yang et al.112 have further elucidated on the possibilities for
rehabilitation of lower limb function. In our own laboratory,
we have shown that environmental enrichment (animal
physiotherapy) does provide good preclinical evidence for
long-term, sustainable beneficial outcomes. Standard and
enriched environments and their effects on brain recovery
have been studied. Pathologically, enriched housing has been
shown to significantly reduce damage in the thalamus of rats
undergoing hypoxic-ischemic insults compared with controls.
Interestingly, this reduction in thalamic damage is only evident
in postnatal day-10 rat pups, equivalent to a full-term infant.
Postnatal day-63 and -180 rats, equivalent to juveniles and
adults, do not show a difference in brain injury, specifically
within the thalamus, between standard and enriched housing.
These results suggest that age is a variable that needs to be
considered when finding an optimal therapeutic window for
rehabilitation therapies.108,109 The pathologic findings also
correlated with improved functional outcomes. However,
regarding this, we found that environmental enrichment or
rehabilitation had a greater beneficial effect on males than on
females. The findings certainly suggest that rehabilitation is a
significant tool in recovery from hypoxia-ischemia and that
gender is a variable that should be taken into account as a
potential confounder.
Conclusion
Innovative therapies in the prevention and treatment of CP are
increasingly becoming a possibility. Indeed, postischemic
hypothermia has rapidly translated from the bench to the
bedside in the last decade and has significantly improved the
outcome of many children who may have evolved to develop
CP. So much so that it is now the mainstay of therapy in most
tertiary care NICUs in America, Europe, and Australia/
New Zealand. Indeed, work is being done to expand the
utilization of this transformative therapy by producing inex-
pensive methodologies for the induction of hypothermia in
less-developed countries.110 The ability to translate therapies to
clinical trial and to transfer to practice is reliant on the
production of preclinical evidence in the animal model of
efficacy, safety, and permanence of effect. Particularly when
it comes to therapies in children, the use of animal models are
essential for the rapid turn around and determination of
therapies that in the human child would often take decades
to determine and may be seen as unethical in the absence of
such preclinical data.
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