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Abstract

The discovery of safe and effective therapies for perinatal
hypoxia ischemia (HI) and stroke remains an unmet goal of
neonatal-perinatal medicine. Because of the many develop-
mental and functional differences between the neonatal
brain and the adult brain, the ability to extrapolate adult data
to the neonatal condition is very limited. For this reason, it
is incumbent on scientists in the field of neonatal brain
injury to address the questions of therapeutic efficacy of an
array of potential therapies in a developmentally appropriate
model. Toward that end, a number of new models of neo-
natal HI and stroke have been introduced recently. Addi-
tionally, some of the established models have been adapted
to different species and different ages, giving scientists a
greater choice of models for the study of neonatal HI and
stroke. Many of these models are now also being used for
functional and behavioral testing, an absolute necessity for
preclinical therapeutic trials. This review focuses primarily
on the newly developed models, recent adaptations to es-
tablished models, and the studies of functional outcome that
have been published since 2000.
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Introduction

The use of animal models for the study of prenatal/
neonatal hypoxia-ischemia (HI1) and stroke has been
reviewed in detail periodically (Ashwal and Pearce

2001; Hagberg et al. 1997, 2002b; Roohey et al. 1997;
Vannucci et al. 1999; Yager 2004). These extensive reviews
have generated information regarding the variety, frequency
of use, and relative appropriateness of both large and small
animal models to the study of brain injury in the perinatal
period. Other reviews have focused on the numerous mo-
lecular and biochemical mechanisms of injury that have
been studied in the neonatal rodent model (Vexler and Fer-

riero 2001). Recent reviews have specifically discussed the
challenge of providing therapies that are both efficacious
and safe for the developing brain (Yager 2004), models of
white matter injury (Hagberg et al. 2002a), and the experi-
mental background for the use of hypothermia to treat neo-
natal asphyxial brain injury (Thoresen 1999, 2000). Rather
than attempting to duplicate these efforts, this article pri-
marily focuses on the literature published since 2000. The
discussion includes (1) recently developed models of neo-
natal HI and stroke, and (2) recent adaptations of established
models that have provided new insights into the neurobiol-
ogy and neuropathology of perinatal brain injury. The text
also focuses on (3) the increased number of studies provid-
ing long-term neurobehavioral and neuropathology outcome
data in animal models of neonatal HI and stroke, as well as
(4) the successful translation of hypothermia research into a
clinical research tool, and the potential for hypothermia to
serve as a key component of combination therapy for as-
phyxial brain injury.

Classic studies that established neurodevelopmental par-
allels across species (Clancy et al. 2001; Dobbing and Sands
1979) have provided the foundation for the use of animal
models to study neonatal brain injury. While Dobbing and
Sands used rates of brain growth to make cross-species
comparisons, recent multivariate analysis of aspects of both
histological and functional maturity of multiple brain re-
gions and neural systems has provided an extremely useful
tool for comparing the prenatal and early postnatal brain
development of eight widely used mammalian species with
that of the human. Using these data, we now have compel-
ling evidence that the most widely used model of neonatal
asphyxial brain injury, the 7-day-old rat, in many ways has
brain maturity equivalent to that of an early third trimester
human fetus (Clancy et al. 2001). Based on the large portion
of current work on neonatal HI and stroke that utilizes neo-
natal rodent models, and because the focus of this paper is
on this body of work, these intraspecies developmental
comparisons are referred to extensively below.

Recently Developed Models for the Study
of Neonatal HI and Stroke

Models of perinatal and neonatal HI continue to be devel-
oped to match our understanding of the various pathologies
resulting in neonatal HI brain injury. One of the greatest
deficits in neonatal HI research has been that very few stud-
ies have actually described true intrauterine HI. Until re-
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cently, fetal sheep exposed to maternal hypoxemia (Gleason
et al. 1990; Harris et al. 2001) or to umbilical cord occlusion
(Gonzalez et al. 2005; Lotgering et al. 2004) were the most
widely utilized models of intrauterine HI. Despite the abun-
dance of neurophysiological data obtained from these stud-
ies, the model has major disadvantages. Pregnant ewes are
large and very expensive. If they survive, the affected lambs
show little clinical evidence of brain injury, which has re-
sulted in the absence of follow-up neurobehavioral testing.
A recently described model of perinatal brain injury—
global HI in the near-term fetal rabbit—avoids most of the
problems associated with the fetal lamb model. This new
model very nicely mimics acute placental insufficiency in
humans, and the surviving newborn rabbits that display per-
sistent hypertonia and motor deficits provide a striking phe-
notype of cerebral palsy (Derrick et al. 2004). Biochemical
studies of the model have already been published (Derrick
et al. 2001; Tan et al. 2001), and imaging studies are cur-
rently under way (S. Tan, Norwestern University, Evanston,
IL, personal communication, 2005).

Other rodent models reported in the late 1990s will al-
low more detailed studies of the role of ischemia in the
development of white matter injury and the role of reper-
fusion in the overall contribution to injury. Bilateral carotid
occlusion in the 5-day-old rat, without accompanying hyp-
oxia, causes preferential white matter injury (Uehara et al.
1999) with only scattered neuronal injury within the cortex.
Similar results have been found with bilateral carotid oc-
clusion as early as postnatal day 1 (Cai et al. 2001). The
selectivity of this model appears to be due to the reduced
degree of cerebral blood flow reduction caused by bilateral
carotid occlusion rather than by unilateral carotid occlusion
plus hypoxia (Vannucci et al. 1988). This model holds a
great deal of promise for the study of mild to moderate
handicap that is associated with ventriculomegaly but mini-
mal other detectable neuropathology. One follow-up study
using this model has been published, and the results are
cautionary for neonatal caretakers. The respiratory stimu-
lant doxapram appears to exacerbate injury in the setting of
the moderate ischemia caused by bilateral carotid artery
occlusion (Uehara et al. 2000). Many similar studies could
be performed to determine the effect of drugs on the devel-
opment of periventricular leukomalacia (PVL1) if additional
studies validate bilateral carotid occlusion as a good model
for PVL.

Several models are currently being used for investiga-
tion of neonatal stroke (Derugin et al. 1998; Renolleau et al.
1998; Wen et al. 2004a). Each of these models allows a
different degree of reperfusion after the period of ischemia.
These models are currently being used to determine the role
of reperfusion in caspase activation after stroke (Manabat et
al. 2003) and the therapeutic potential of caspase inhibition
in neonatal stroke (Joly et al. 2004). In the model of per-
manent middle cerebral artery occlusion, the effect of stroke
on the erythropoietin system and the potential use of eryth-
ropoietin for neuroprotection after neonatal stroke is being
tested (Sola et al. 2005; Wen et al. 2004b). With the rec-

ognition of neonatal stroke as a major contributor to the
total burden of neonatal brain injury (Lynch and Nelson
2001; Lynch et al. 2002; Nelson and Lynch 2004), these
models provide a valuable tool for investigation of this
clinical problem.

Recent Adaptations of Established
Models of Neonatal HI and Stroke

Most biochemical and pathological data in neonatal HI have
been derived from highly utilized rodent models. With the
initial description of the adaptation of the Levine model of
HI to the postnatal day 7 rat in 1981 (Rice et al. 1981),
Vannucci and colleagues provided investigators with one of
the most robust and productive models of brain injury ever
described. The original authors, as well as many others,
have provided reviews of this and related models of neona-
tal HI and stroke, and the reader is referred to this abundant
literature (Ashwal and Pearce 2001; Hagberg et al. 2002b;
Roth and D’Sa 2001; Tuor et al. 1996; Vannucci and
Vannucci 1997; Vannucci et al. 1999; Vexler and Ferriero
2001; Yager 2004). Several of the more recent adaptations
of this model are mentioned below.

With the continuing increase in the number of available
transgenic mice strains, it was natural to adapt the Vannucci
model to the mouse (Ditelberg et al. 1996). In the process of
developing the murine model, several important modifica-
tions were required. These alterations include basic changes
in technique (e.g., a surgical microscope for the carotid
ligation in the much smaller postnatal day 7 mouse) and
significant titration of the degree of hypoxic exposure.
Whereas most investigators use at least 90 min of exposure
to FiO2 � 0.08 to produce a moderate to severe injury
neonatal rat (Rice et al. 1981; Towfighi et al. 1991), the
length of hypoxia used to produce injury in the neonatal
mouse is significantly less (40-70 min in most studies) (Fer-
riero et al. 1996; Fullerton et al. 1998; Graham et al. 2004;
Hagberg et al. 2004; Xu et al. 2001).

Recognition that there are marked strain differences in
susceptibility to HI injury has increased the complexity of
studies of neonatal HI in the mouse model. In one of the
most important studies to date using the neonatal mouse
model, Sheldon and coworkers demonstrated that suscepti-
bility to and severity of injury after neonatal HI is highly
strain dependent (Sheldon et al. 1998). Marked differences
between strains were seen, including a four-fold increase in
the percentage of CD1 mice being injured after 30 min of
hypoxia compared with 129Sv mice. Differences were also
seen between strains in HI-induced mortality and median
histopathological injury score. Because of these marked
strain differences, in studies in which no wild-type litter-
mates are available, careful attention must be paid to the
selection of wild-type controls.

When using conventional transgenic mice, one also en-
counters the inflexibility of the altered gene expression and
the ubiquitous nature of the altered gene expression with
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each cell in the body being affected (Ryding et al. 2001).
Complete lack of expression or permanent overexpression
of a protein throughout the body causes embryonic or peri-
natal lethality in some cases (Ohshima et al. 1996; Varfo-
lomeev et al. 1998) or produces a phenotype that confounds
the interpretation of subsequent experiments (Kuida et al.
1996, 1998). This limitation is being overcome with condi-
tional transgenic strategies that have been applied to devel-
opmental (He et al. 2004; Hirasawa et al. 2004) and
degenerative neurological disorders (Beglopoulos and Shen
2004; Beglopoulos et al. 2004), but not yet to acute forms of
brain injury. Despite these limitations, the development of
the murine model of neonatal HI injury has allowed inves-
tigators to begin to take advantage of the large number of
genetically modified mouse strains to determine the effect
of loss or gain of function of an individual protein on im-
mature brain injury (Ferriero et al. 1996; Fullerton et al.
1998; Graham et al. 2004; Hagberg et al. 2004).

Adapting the Vannucci model to the extremely imma-
ture rat has also revealed some important developmental
differences in injury susceptibility (Sheldon et al. 1996) and
has opened new avenues of investigation in neonatal brain
injury (McQuillen et al. 2003). These extremely immature
(postnatal day 1-2) animals require a longer and more se-
vere degree of hypoxia to produce injury compared with
postnatal day 7 rats, and there is a greater degree of damage
to the ipsilateral subcortical developing white matter than in
older rats (Sheldon et al. 1996). This subcortical damage has
been recognized to include death of both oligodendrocyte
progenitors and subplate neurons (McQuillen et al. 2003).
Premature death of this transient but important population
of neurons may well explain the pervasive abnormalities of
neurodevelopment seen in the most extremely immature in-
fants, abnormalities that cannot be explained on the basis of
white matter injury alone (McQuillen et al. 2003). These
investigators are continuing the study of subplate neurons,
attempting to determine which signaling pathways cause
cell death versus cell survival in these neurons and how
defects in neurotropin receptors affect thalamocortical in-
nervation (DeFreitas et al. 2001; McQuillen et al. 2002).

A large part of our understanding of the unique suscep-
tibility of the immature brain to excitotoxicity is based on
nearly two decades of investigation by Johnston and col-
leagues, who have used the immature rat model of intra-
striatal injection of various glutamate receptor agonists
(McDonald and Johnston 1990, 1993; McDonald et al.
1988, 1992; Trescher et al. 1994). This model has also been
adapted to the immature mouse, with the initial report of the
model including a detailed description of the neurodevel-
opmental effects of excitotoxic injection during the first 10
postnatal days (Marret et al. 1995). The model is now being
used to test the effect of excitotoxic injection in genetically
and immunologically modified mice (Hennebert et al. 2004;
Mesples et al. 2005). Based on the large number of recent
publications using this model, it is well accepted and is
providing a continuous flow of information regarding the
complex role of cytokines (Mesples et al. 2003, 2005),

thrombophilic agents (Hennebert et al. 2005), oxygen-free
radicals (Plaisant et al. 2003), and microglial activation
(Dommergues et al. 2003) in the development of injury after
excitotoxic injection.

Using the murine model, it has been shown that the
neurotropin brain-derived neurotrophic factor (BDNF1) ex-
acerbates excitotoxic injury when administered at postnatal
day 0, protects against excitotoxicity at postnatal day 5, and
is without effect on excitotoxic lesions at postnatal day 10
(Husson et al. 2004). These results are extremely important
because BDNF is one of very few drugs shown to provide
lasting neuroprotection in the rat model of neonatal HI
(Almli et al. 2000). If the highly age-dependent effects of
BDNF can be translated into human terms (Clancy et al.
2001), it would suggest that drugs could change from being
harmful to being useful in as few as 5 wk, and then be
without effect in another 5 wk. Such a model, which dis-
plays developmentally specific outcomes, is invaluable for
investigators to proceed toward testing of other therapies for
neonatal HI and stroke.

Long-term Follow-up and Functional
Outcome Studies

An increased number of studies now provide long-term neu-
robehavioral and neuropathology outcome data in animal
models of neonatal HI and stroke. Another important criti-
cism of neonatal brain injury research has focused on the
paucity of long-term follow-up studies and of behavioral
and functional outcome studies. Roohey’s extensively ref-
erenced review of animal models of neonatal HI brought
this issue to the fore. From 1955 to 1997, only 29% of
studies tested any outcome at greater than 24 hr after injury,
and only 23% of studies included a clinical developmental,
functional, or behavioral endpoint (Roohey et al. 1997). No
repetition of this analysis has been performed; however, a
cursory Medline search indicates that many studies of neo-
natal HI are now designed to test learning, memory, coor-
dination, and other correlates of cognition, behavior, and
motor function at later time points (Balduini et al. 2000;
Bona et al. 1997; Ten et al. 2003; Yang et al. 2004). These
studies now enable investigators to determine the following:
(1) whether the models show late functional sequelae remi-
niscent of injury to the human newborn; (2) whether poten-
tial therapies alter neuropathology, biochemical, and
functional outcomes; and (3) whether late neuropathology
and functional outcomes correlate with one another. To test
potential therapies rigorously before clinical trials, it is im-
perative to know whether they improve functional neuro-
logical outcomes in relevant models of HI and stroke.

Most of the late neurobehavioral and functional out-
come studies have been performed in the neonatal rat fol-
lowing HI (Almli et al. 2000; Arteni et al. 2003; Balduini et
al. 2000, 2003; Yang et al. 2004); however, studies in the
murine and rabbit models are also now being reported. The
importance of late functional and pathological testing is
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highlighted by the finding that injury that appears to be
minimal at 2 wk after a moderate HI insult evolves to de-
layed infarction and cerebral atrophy no different from in-
jury after a severe insult (Geddes et al. 2001). The
functional and neurobehavioral testing performed in neona-
tal mice following HI (Ten et al. 2003, 2004) has been
combined with neuropathology studies to determine how
well pathology predicts function following HI in this model.
The same is true for the intrauterine ischemia model in
rabbits (Derrick et al. 2004). The neonatal rabbit displays
marked functional deficits at birth after intrauterine ische-
mia at 67 to 70% of gestation, and these deficits are accom-
panied by injury to subcortical motor pathways, including
the basal ganglia and thalamus (Derrick et al. 2004). As yet,
no similar late neuropathology and functional studies have
been published in the other rodent models of HI and stroke.

Animal Models of Neonatal Asphyxia:
Valuable for Preclinical Testing
of Hypothermia

Hypothermia, which has been tested extensively and is ef-
ficacious in animal models, is likely to be useful in combi-
nation therapy for neonatal HI and stroke. The rekindling of
interest in hypothermia for treatment of neonatal asphyxial
brain injury since the mid-1990s is perhaps the best example
of collaborative basic and clinical research resulting in
progress in the treatment of neonatal brain injury. It is also
a therapy that has been tested in almost every model of
available neonatal HI. To date, hypothermia is the only
treatment that appears to interrupt the initial rapid and over-
whelming necrotic/excitotoxic process that occurs after
acute severe HI in both large and small animals. Neuropro-
tection from hypothermia has been demonstrated in the
postnatal day 7 (Bona et al. 1998; Mishima et al. 2004;
Trescher et al. 1997; Young et al. 1983) and postnatal day
14 rat (Taylor et al. 2002) subjected to unilateral ischemia
plus global hypoxia, the near-term fetal sheep exposed to
umbilical cord occlusion (Gunn et al. 1997, 1998) and the
1-day- (Thoresen et al. 2001) and 1-wk-old piglet (Agnew et
al. 2003) exposed to cardiac arrest.

Investigators are currently trying to determine whether
hypothermia also affects apoptotic cell death following HI
and whether it can be combined with antiapoptosis therapies
for improved efficacy (Adachi et al. 2001; Zhu et al. 2004).
Recent evidence that early anticonvulsant therapy combined
with delayed hypothermia provides significant improve-
ment in both function and neuropathology following HI is
heartening and may be the beginning of effective combina-
tion therapies for neonatal HI brain injury (Liu et al. 2004).
This evidence has been generated in the relatively immature
postnatal day 7 rat and must now be replicated in other
larger and more mature animal models that have been used
for hypothermia research. After extensive preclinical test-
ing, researchers investigating use of hypothermia in the
newborn have diligently seen it through the arduous process

of clinical trials (Azzopardi et al. 2000; Battin et al. 2003;
Debillon et al. 2003). Unfortunately, despite some limited
positive outcomes (Battin et al. 2001; Compagnoni et al.
2002; Inder et al. 2004), some data currently suggest that
hypothermia alone is unlikely to provide adequate therapy
for neonatal HI (Gluckman et al. 2005; Jacobs et al. 2003).
These recent data from human studies increase the urgency
to pursue therapy combination studies with hypothermia.
Fortunately, because of the worldwide interest in hypother-
mia to treat neonatal HI, many well-developed models are
available to enable pursuit of this work (Agnew et al. 2003;
Bona et al. 1998; Gunn et al. 1997, 1998, 1999; Mishima et
al. 2004; Taylor et al. 2002; Thoresen et al. 2001; Trescher
et al. 1997; Young et al. 1983).

Conclusion

It is very fortunate that investigators have a great variety of
models available for the study of neonatal HI and stroke.
Furthermore, this vibrant research community has demon-
strated a willingness to develop new models and adapt es-
tablished models as needed. With the plethora of available
models, the importance of choosing the appropriate model
in which to study various aspects of HI and stroke injury on
brain development, behavior, and functional outcomes can-
not be overstated. However, an even more rigorous selec-
tion process must be applied to the choice of the appropriate
animal model for testing possible treatments for neonatal HI
and stroke.
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