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Abstract
Adenosine A2A antagonists can exert antiparkinsonian effects in animal models. Recent experiments studied the ability of MSX-3 (an aden-
osine A2A antagonist) to reverse the locomotor suppression and tremor produced by dopamine antagonists in rats. MSX-3 reversed haloperidol-
induced suppression of locomotion, and reduced the tremulous jaw movements induced by haloperidol, pimozide, and reserpine. Infusions of
MSX-3 into the nucleus accumbens core increased locomotion in haloperidol-treated rats, but there were no effects of infusions into the accum-
bens shell or ventrolateral neostriatum. In contrast, MSX-3 injected into the ventrolateral neostriatum reduced pimozide-induced tremulous jaw
movements. Dopamine/adenosine interactions in different striatal subregions are involved in distinct aspects of motor function.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Interactions between diverse neurotransmitter systems in
the basal ganglia are thought to regulate aspects of motor func-
tion related to parkinsonism. In addition to dopamine (DA),
considerable research has implicated several other basal
ganglia neurotransmitters, including acetylcholine, serotonin,
glutamate and GABA, in aspects of motor function and dys-
function [1e4]. More recently, brain adenosine neurons have
also been implicated in regulating the motor functions of the
basal ganglia [5e7]. Anatomical studies have demonstrated
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that the adenosine A2A receptor subtype is highly expressed
in DA-rich striatal regions [7e11]. Adenosine A2A receptors
in the striatum are largely expressed on enkephalin-positive
striatopallidal neurons, which also contain DA D2 receptors
[7e10]. Adenosine A2A receptor antagonists produce motor ef-
fects in animal models, and it has been widely suggested that
adenosine A2A antagonists could be used as non-dopaminergic
treatments for parkinsonian symptoms [4,5,11e17]. For all
these reasons, it is important to characterize the effects of aden-
osine A2A antagonists in animal models [18].
2. Studies of locomotor activity in rats

Adenosine A2A antagonists have been assessed for their
motor effects using a number of tasks that are suitable for
rodents. Haloperidol-induced rigidity was reversed by the
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A2A antagonist SCH 58261 [19]. Hauber et al. [20] observed
that catalepsy induced by DA antagonists could be reversed
by the selective A2A antagonist MSX-3. In addition, several
studies have focused on the effects of adenosine A2A antago-
nists on locomotor activity. The adenosine A2A antagonist
KW-6002 reversed the hypolocomotion induced by the DA-
depleting agent reserpine [17]. The impairment of locomotion
shown by D2 receptor-deficient mice was rescued by the aden-
osine A2A antagonist KW-6002 [21]. Systemic injections of
the adenosine A2A antagonist KF17837 (5.0e20.0 mg/kg)
reversed the suppression of locomotion induced by subchronic
injections of haloperidol [22].

In order to understand more fully the brain mechanisms
mediating the effects of drugs acting on adenosine, it is impor-
tant to identify the specific brain locus at which adenosine A2A

receptor antagonists act to increase locomotion in animals
with impaired dopaminergic function. Adenosine A2A recep-
tors are present throughout the striatal complex, which
includes the caudate/putamen (i.e., neostriatum) and also the
nucleus accumbens [6,7,9,10]. Previous studies have indicated
that adenosine A2A receptors in the nucleus accumbens may be
important for mediating the locomotor effects of drugs that act
on adenosine A2A receptors [23e25]. Moreover, there is con-
siderable evidence indicating that interference with DA trans-
mission in the nucleus accumbens leads to a suppression of
spontaneous locomotion [26e29].

Recently, experiments were conducted to study the ability
of systemic or intra-accumbens injections of the selective
adenosine A2A antagonist MSX-3 to reverse the locomotor
effects of acute or subchronic administration of haloperidol
in rats [30]. Haloperidol is a DA antagonist that is known to
suppress locomotion in rats (e.g., Ref. [22]) and to produce
parkinsonian side-effects in humans [31,32]. MSX-3 is a water-
soluble pro-drug that is rapidly cleaved by phosphatases in
vivo into MSX-2, which is the active antagonist of A2A recep-
tors [33]. Therefore, we studied the ability of systemic injec-
tions of MSX-3 to reverse the suppression of locomotion
induced by acute or repeated subchronic administration of
0.5 mg/kg haloperidol [30]. Repeated administration of halo-
peridol was used because this procedure has been employed
previously for studies of adenosine A2A antagonists [22] and
because repeated administration mimics the conditions seen
when antipsychotic drugs such as haloperidol are used clini-
cally. Additional experiments have studied the ability of intra-
cranial injections of MSX-3 to increase locomotion in
haloperidol-treated rats [30]. Three brain areas were studied:
nucleus accumbens core, dorsomedial nucleus accumbens
shell and ventrolateral neostriatum (VLS). The nucleus ac-
cumbens was investigated because this brain area is involved
in the regulation of locomotor activity [23,24,26e28,30].
Although earlier studies examined the effects of intra-
accumbens injections of MSX-3 on locomotor activity, these
studies did not differentiate between core and shell subregions,
and they did not assess the effects of A2A antagonism in the
presence of a DA antagonist. The VLS site was chosen as
a control striatal site because this striatal subregion is thought
to be involved in motor functions such as tremor (see below)
and skilled motor control [34e36], but is not thought to be im-
portant for locomotion [28,37,38].

In these studies, systemic injections of MSX-3 in a dose
range of 2.5e10.0 mg/kg were capable of reversing the sup-
pression of locomotion induced by either acute or repeated
(i.e., 14 day) administration of haloperidol 0.5 mg/kg [30].
Bilateral infusions of MSX-3 into the nucleus accumbens
core (2.5e5.0 mg per side) produced a dose-related increase
in locomotor activity in rats treated with 0.5 mg/kg haloperi-
dol either acutely or repeatedly [30]. There was no overall sig-
nificant effect of MSX-3 infused into either the dorsomedial
shell or the VLS. In addition, there were no significant effects
of systemic or intra-accumbens injections of MSX-3 (10.0 mg/
kg and 5.0 mg per side, respectively) in rats that were not
treated with haloperidol. These results indicate that antago-
nism of adenosine A2A receptors can reverse the locomotor
suppression produced by DA antagonism and that a critical
site for this effect is the nucleus accumbens core. Although
Parkinson’s disease is generally associated with depletions
of DA in the neostriatum [39], this disorder is also character-
ized by nucleus accumbens DA depletions [40,41]. As with
rodents, the nucleus accumbens of primates is also involved
in locomotion [42]. Thus, it is possible that DA/adenosine
interactions in the nucleus accumbens may be important for
regulating behavioural functions, including locomotion, that
are impaired in parkinsonism.

3. Studies of tremulous jaw movements

There is considerable uncertainty about the neurochemical
mechanisms that underlie tremor generation, despite the fact
that resting tremor is one of the primary symptoms of parkin-
sonism. A few studies have examined the effects of adenosine
antagonists on parkinsonian tremor in humans, and some pos-
itive effects have been reported [14,43]. One of the rodent pro-
cedures used as a model of parkinsonian resting tremor is
drug-induced tremulous jaw movements (TJMs). TJMs are
rapid vertical deflections of the lower jaw that resemble chew-
ing but are not directed at any stimulus [44]. Studies using
slow-motion or freeze-frame video analyses, as well as elec-
tromyographic methods, have shown that these movements
occur largely in the 3- to 7-Hz range that is also characteristic
of parkinsonian resting tremor [44e47]. TJMs can be induced
by striatal DA depletions [37,45] and by centrally acting chol-
inomimetic drugs [2,44,48e51]. They are also induced by typ-
ical antipsychotics, such as haloperidol [22,52], pimozide
[46,48] and reserpine [47], but not by atypical antipsychotics
[52,53]. Although chronic administration of antipsychotic
drugs can result in oral movements that may be related to other
movement disorders, such as tardive dyskinesia, considerable
evidence indicates that the chewing-like jaw movements
induced by acute or subchronic administration of typical anti-
psychotic drugs share many characteristics with parkinsonian
symptoms [2,44,46,47,51]. TJMs have been used as a rodent
model of parkinsonian tremor for assessing antiparkinsonian
drugs with various pharmacological profiles [4,47,48,51].
The adenosine A2A antagonist KF17837 (10.0e20.0 mg/kg)
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suppressed haloperidol-induced TJMs [22], and the TJMs
induced by the acetylcholinesterase inhibitor tacrine were
reduced by systemic or intrastriatal injections of the adenosine
A2A antagonists SCH 58261 and SCH BT2 [54].

In a recent series of experiments, the potential antiparkinso-
nian effects of the selective adenosine A2A antagonist MSX-3
were assessed by using acute or subchronic administration of
antipsychotic drugs to induce TJMs [55]. In the first group
of studies, pimozide (Orap) was used to induce motor impair-
ments. Pimozide is a typical antipsychotic drug, which has
been shown to produce motor side-effects in patients with
schizophrenia and to exacerbate the symptoms of Parkinson’s
disease [46,56]. Moreover, pimozide has been reported to be
more likely to produce parkinsonian tremor compared with
other typical antipsychotics [56]. In recent papers, it was dem-
onstrated that pimozide could induce TJMs with acute or sub-
chronic administration (i.e., 1, 7 or 13 days of injections) at
doses up to 1.0 mg/kg [46], and that the TJMs induced by
repeated pimozide were blocked by the antiparkinsonian anti-
cholinergic drug atropine [48]. Based on these previous exper-
iments, the first group of studies assessed the ability of
adenosine A2A antagonism to suppress tremulous movements
and increase motor activity in pimozide-treated rats [55]. In
these studies, rats were injected with 1.0 mg/kg of pimozide
for 7 days, and on the eighth day they received injections of
pimozide plus various doses of the A2A antagonists
KW-6002 or MSX-3. After receiving these drug treatments,
the rats were assessed with a battery of motor tests that
included observations of TJMs, catalepsy and locomotor activ-
ity. Administration of both KW-6002 and MSX-3 suppressed
pimozide-induced TJMs, and also reduced catalepsy and in-
creased locomotion in the pimozide-treated rats [55]. Addi-
tional studies showed that MSX-3 suppressed the TJMs
induced by haloperidol, as well as the DA-depleting agent
reserpine [55]. An additional experiment investigated the
effects of intracranial injections of MSX-3 into the VLS, in or-
der to determine whether local injections of an adenosine A2A

antagonist could reverse the TJMs induced by pimozide [55].
The VLS was chosen because this brain area, which is thought
to be the homologue of the ventral putamen in primates, has
been strongly implicated in the control of TJM activity
[34,37,44,49,54,57]. This experiment demonstrated that injec-
tions of MSX-3 into the VLS were able to suppress pimozide-
induced TJMs [55], which was consistent with an earlier study
showing that injections of an adenosine A2A antagonist into
the VLS could reduce the TJMs induced by the cholinomi-
metic drug tacrine [54].

4. Discussion

Taken together, the results of these experiments indicate
that adenosine A2A antagonism can reverse locomotor sup-
pression and tremulous movements induced by typical anti-
psychotics [22,30,55]. These effects are consistent with the
hypothesis that blockade of adenosine A2A receptors can pro-
duce antiparkinsonian effects in animal models. Adenosine
A2A antagonists may be useful clinically for their tremorolytic
effects, and may help in treating both idiopathic and antipsy-
chotic-induced parkinsonian symptoms [22,30,55]. Moreover,
these experiments indicate that different striatal subregions are
involved in distinct aspects of motor function. This principle
has been demonstrated clearly in the substantial literature
showing that DA depletions or antagonism can have regionally
specific effects [28,37,58], and it has important implications
for understanding the anatomical mechanisms underlying the
motor effects of antiparkinsonian drugs, including adenosine
A2A antagonists. Although antiparkinsonian drugs are typi-
cally given systemically, with the intention of producing an
improvement in several different motor symptoms, it is never-
theless reasonable to suggest that different therapeutic effects
(i.e., increase in locomotion, decrease in rigidity or tremor) are
related to actions on distinct striatal subregions. In addition to
studying these specific aspects of motor function, future
research should also investigate the potential role of adenosine
A2A receptors in motivational functions that are impaired in
parkinsonism, such as psychomotor activation and effort-
related processes [59].
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