| Table 2 Known and putative autism genes (organized by pathogenesis) | | | |---|---------------------------------------|-------------------| | Protein name (function) | Gene symbol/locus | Test availability | | Neuronal cell adhesion and/or synapse function | | | | Neuroligin 3 (synapse formation and function) | NLGN3X Xq28 | Clinical | | Neuroligin 4 (synapse formation and function) | NLGN4X Xp22.33 | Clinical | | Neurexin 1 (transsynaptic binding partner for neuroligins) | NRXN1 2p16.3 | Research | | SH3 and multiple ankyrin repeat domains (organizes post synaptic density and
binds neuroligins) | SHANK3 22q13 | Research | | Contactin-associated protein-like 2 (synaptic binding partner for contactin molecules involved in neuronal migration) | CNTNAP2 7q36 | Research | | Contactin 4 and Contactin 3 (neuronally expressed adhesion molecules) | CNTN4 and CNTN3 6p26-p25 | Research | | Protocadherin 10 (a cadherin-related neuronal receptor: may play a role in the
establishment and function of specific cell-cell connections; essential for
normal forebrain axon outgrowth) | PCDH10 4q28 | Research | | Neuronal cell adhesion molecule | NRCAM 7q31 | Research | | Neuronal activity regulation | | | | Methyl CpG-binding protein 1 (CAN methylation-dependent transcriptional repressor) | MECP2 Xq28 | Clinical | | Ubiquitin protein ligase E3A | UBE3A 15q11-q13 | Clinical | | Deleted in autism | DIA1 (c3orf58) 3q | Research | | Ataxin 2-binding protein 1 | A2BP1 16p13 | Research | | Neurodevelopmental genes | | | | Engrailed 2 (homeobox gene involved in midbrain and cerebellum
development) | EN2 7q36 | Research | | Homeobox A1 (involved in hindbrain development) | HOXA1 17p15.3 | Clinical | | Homeobox B1 (involved in hindbrain development) | HOXB1 17q21-q22 | Research | | Reelin (signaling protein involved in neuron migration) | RELN 7q22 | Research | | WENT2 (signaling proteins involved in embryonic patterning, cell
proliferation, and cell determination) | WNT2 7q31 | Research | | FOXP2 (transcription factor involved in embryogenesis and neural functioning) | FOXP2 7q31 | Research | | ARX homeobox gene | ARX Xp22.13 | Clinical | | Patched domain containing 1 gene | PTCHD1 Xp22.11 | Research | | Sodium channel | | | | Sodium channel, voltage-gated, type VII | SCN7A 2q | Research | | Na+/H+ exchanger isoform 9 | SLC9A9 (NHE9) 3q24 | Research | | Calcium channel | | | | Calcium channel, voltage-dependent, L type, alpha 1C subunit (Timothy syndrome) | CACNAIC 12p13.3 | Clinical | | Calcium channel, voltage-dependent, alpha 1H subunit | CACNAIH 16p13.3 | Research | | Calcium channel, voltage-dependent, L type, alpha 1F subunit | CACNAIF Xp11.23 | Clinical | | Neurotransmitter genes | | | | GABA receptor subunits (major inhibitory transmitter receptors in the brain) | GABRB3, GABRA5, GABRG3
15q11.2-q12 | Research | | Serotonin transporter | SLC6.44 17q11.1-q12 | Clinical | | Mitochondrial | | | | Mitochondrial aspartate/glutamate transporter (mitochondrial function and maintaining ATP levels) | SLC25A12 2q24 | Research | | Other genes | | | | Oxytocin receptor | OXTR 3p26.2 | Research | | Laminin beta 1 | LAMB1 7q31.1 | Research | | RING finger protein 8 (ubiquitin ligase and transcriptional coactivator) | RNF8 6p21.3 | Research | | Adapted from GeneReviews, http://www.genetest.org, Copyright, University of Washington, Seattle 1 | | | # Behavioural phenotyping assays for mouse models of autism Jill L. Silverman*, Mu Yang*, Catherine Lord* and Jacqueline N. Crawley* **Face validity** = strong analogies to the endophenotypes of the human syndrome **Construct validity** = the same biological dysfunction that causes the human disease, such as a gene mutation or anatomical abnormality **Predictive validity** = analogous response to treatments that prevent or reverse symptoms in the human disease | Mouse model | Genetic characteristics | Behavioural phenotypes relevant to the symptoms of autism* | | | |-------------|---|---|--|--| | Nign4 | Null mutation in the murine orthologue of the human $\it NLGIN4$ gene $^{\rm 49}$ | Reduced reciprocal social interactions ⁴³ Low sociability ⁴³ Lack of preference for social novelty ⁴³ Reduced ultrasonic vocalizations ⁴⁶ | | | | NIgn3 | Homozygous mutation of humanized R451C mutation of the Nign3 gene ⁴⁴⁴⁶ | No genotype differences in reciprocal social interactions ^{44,45} No genotype differences in sociability ^{44,5} No genotype differences in preference for social novelty ⁴⁴ Reduced ultrasonic vocalizations ⁴⁴ | | | | | Null mutation in the murine orthologue of the human
NLGN3 gene ⁴¹ | No genotype differences in reciprocal social interactions ⁴¹ Reduced preference for social novelty ⁴¹ | | | | Neurexin 1α | Null mutation in the murine neurexin 1 α generated by deleting the first exon of the gene*6 | No genotype differences in reciprocal social interactions ⁴⁴ No genotype differences in sociability ⁴⁶ Impaired nest-building behaviour ⁴⁶ Increased repetitive self-grooming ⁴⁶ | | | | Nlgn1 | Null mutation in the murine orthologue of the human NLGN1 gene $^{\theta}$ | No genotype differences in reciprocal social interactions ⁴⁷ No genotype differences in sociability ⁴⁷ No genotype differences in preference for social novelty ⁴⁷ Impaired nest-building behaviour ⁴⁷ | | | | Pten | Conditional null mutation, inactivated in neurons of
the cortex and hippocampus, mouse orthologue of the
human <i>PTEN</i> gene ^{sa} | Reduced reciprocal social interactions ⁶⁸ Low sociability ⁶⁸ Impaired nest-building behaviour ⁶⁸ Impaired social recognition ⁶⁸ | | | | | Pten haploinsufficent mutant line in which exon 5, and thus the core catalytic phosphatase domain, is deleted ⁴⁸ | Low sociability in females ⁴⁸ | | | | En2 | Null mutation in the murine orthologue of the human
EN2 gene ^{48,50} | Reduced reciprocal social interactions ⁴⁹ Increased repetitive self-grooming ⁴⁹ No genotype differences in sociability, confounded by low activity levels ⁵⁰ | | | | 15q11-13 | Duplication in the genomic region on the mouse chromosome 7 homologous to the human genomic region 15q11–13 (REF. 29) | Low sociability ¹⁹ Ultrasonic vocalizations elevated in pups and reduced in adults ²⁹ Impaired reversal learning ¹⁹ | | | | 17p11.2 | Duplication in the genomic region of murine chromosome 11 homologous to the human genomic region 17p11.2 (REF. 51) | Low sociability ⁵¹ No genotype differences in preference for social novelty ⁵¹ Impaired nest-building behavious ⁵¹ | | | | <u>-</u> | Null mutation in the murine orthologue of the human serotonin transporter (SLC6A4) gene ⁵⁰ | Low sociability ⁵⁰ | |----------|---|--| | | | Lack of preference for social novelty⁵⁰ | | | Haploinsufficient mutant line of the human serotonin
transporter SLC6A gene ⁴⁸ | Impaired social recognition ⁴⁸ | | | Null mutation in the murine Oxt gene generated by either a deletion in the first exon ^{40,33,54} or by deletions in the last two exons ⁴⁰ | Impaired social recognition ⁵³ Reduced pup ultrasonic vocalizations ⁵⁴ No genotype differences in sociability ⁴⁰ No genotype differences in preference for social novelty ⁴⁰ | | | Null mutation of the murine vasopressin receptor 1b
Avpr1b gene ^{55,56} | Impaired social recognition ⁵⁵ Reduced pup ultrasonic vocalizations ⁵⁶ | | | Heterozygous mutation in methyl-CpG-binding protein 2 (REFS 39,57,58,59) | Hindlimb clasping ^{97,58} Social avoidance ⁵⁹ Impaired social recognition ⁵⁹ Reduced social interest in an arena ⁵⁹ | | | Null mutant mouse with a targeted mutation in the Fmr1 gene in three genetic backgrounds: C57BL/6] $^{3\times5,00405}$; hybrid of FVB/NJ x C57BL/6] 32 ; and FVB/N-129/OlaHsd 50 | Increased social approach ^{60,61} Reduced reciprocal social interactions ¹⁸ No genotype differences in sociability ⁶² No genotype differences in preference for social novelty ⁶² Low sociability dependent on genetic background ⁶⁰ No genotype differences in preference for social novelty ¹⁰ | | | Heterozygous mutation that replaces the second exon in the Tsc2 gene ⁶³ | * No genotype differences in sociability ⁶³ | | | Heterozygous mutation generated by replacing exons
6–8 in the Tsc1 gene ⁶⁵ | Reduced reciprocal social interactions ⁶⁵ Impaired nest-building behaviour ⁶⁵ | - Repetitive behaviors - Excess self grooming - Novelty preferences - Executive function/attention - Memory - Perseveration/flexibility - Anxiety/exploration/thigmotaxis | Treatment | Mouse model | Phenotypic improvement | | | |---|---|---|--|--| | mGluR antagonists,
MPEP ^{88,161,162} , fenobam ¹⁶² | Fmr1+- | Susceptibility to audiogenic seizures is prevented¹⁶¹ Decreased open field hyperactivity¹⁶¹ Rescued prepulse inhibition of startle deficit¹⁶² Rescued abnormal spine morphology¹⁶² | | | | | BTBR | Reduced repetitive behaviour⁸⁸ | | | | mTOR inhibitors,
rapamycin ^{65,77,177,178} , RAD001
(REF. 177) | Pten | * Prevented and reversed macrocephaly, dendritic and axonal hypertrophy * Improved social interaction time*? * Increased open field centre time*? * Reduced duration and frequency of seizures*? | | | | | Tsc1 null-neuron inactivated in
neurons ^{63,177} | Improved survival rates^{63,177} Improved neuronal morphology, reduced enlarged neurons and restored
myelination¹⁷⁷ | | | | | Tsc1 ^{GFAP} inactivated in glia ¹⁷⁸ | Improved survival rates and weight gain ¹⁷⁸ Prevented seizures and electroencephalography (EEG) abnormalities ¹⁷⁸ | | | | | Tsc2*/-(REF. 63) | Improved learning and memory on Morris water maze and fear
conditioning⁶³ | | | | Oxytocin ¹¹⁴ | OXT ^{-/-} | Rescued deficits in social recognition¹³⁴ | | | | BDNF ⁷⁵ | Fmr1-/- | Rescued long-term potentiation abnormality⁷⁵ | | | | Ampakines, CX546 (REF. 73) | Mecp2-/- | Reversed respiratory deficits? | | | | mGluR genetic reduction ⁷⁴ | Fmr1-4- | Prevented susceptibility to audiogenic seizures ¹⁴ Rescued abnormal spine morphology ¹⁴ Rescue of exaggerated inhibitory avoidance learning ¹⁴ | | | | FMR1 gene
replacement ^{60,61,76} | Fmr1+- | Normalized open field activity ⁶⁰ Normalized light-dark anxiety-like behaviour ⁶⁰ Rescued abnormal social responses ⁶¹ Rescued aincreased prepulse inhibition ⁷⁶ | | | | PAK genetic reduction ⁹² | Fmr1-4- | Normalized open field centre time ⁹² Rescued fear-conditioning deficit ⁹² Rescued long-term potentiation deficit ⁹² | | | | MECP2 gene
replacement ^{174,176} | Mecp2 ^{-/+} is an inducible heterozygous transgenic ¹⁷⁶ | Rescued open field deficits ¹⁷⁶ Increased survival and lifespan ¹⁷⁴ | | | | | Mecp2/Stop is an Mecp2 mutant with
Mecp2 conditional activation ¹⁷⁴ | Normalized weights, breathing, gait and activity ¹⁷⁴ | | | ## Fmr1 KO Mice as a Possible Model of Autistic Features Maude Bernardet* and Wim E. Crusio TABLE 1 Phenotypical Checkup of Fmr1 KO Mice: Behaviors Relevant to Core Symptoms of Autism | Test | Background | Result | Ref. | |---|------------|---|--------------| | Inappropriate social interaction | ns | | | | Mirrored chamber test | B6 | KO < WT for % time in the mirrored chamber | [94] | | Tube test of social dominance | B6 | KO < WT vs. unfamiliar WT the first time
KO = WT vs. unfamiliar WT the third day
KO = WT vs. familiar WT | [94] | | Social interaction test | B6 | KO vs. WT: Active social behavior: KO > WT Passive social behavior: KO < WT KO vs. KO, WT vs. WT: Sniffling and receptive behavior: KO > WT KO vs. C3H, WT vs. C3H: KO < WT | [94]
[95] | | Crawley test | B6 | KO = WT | [94] | | Influence of cage familiarity on response to unfamiliar social partners | B6 | In an unfamiliar cage: KO = WT; in a familiar
cage: KO < WT during the first 5 min, KO >
WT after 20 min | [94] | | Perseverance | | | | | Water maze reversal learning: | | | | | Hidden-platform condition | B6 | KO = WT | [97,98] | | | B6 | Escape latencies: KO > WT | [82,89,96 | | | B6 | Path length: KO > WT | [96] | | | B6
B6 | Number of trials: KO > WT | [98] | | | ВО | Rate of learning:
KO = WT. | [96] | | | | KO-WT | [89] | | Visible-platform condition | B6 | Escape latencies: | [03] | | - I - I - I - I - I - I - I - I - I - I | 20 | KO > WT | [96] | | | | KO = WT | [82] | | E-shaped water maze reversal
learning | B6 | KO = WT | [89] | | Plus-shaped water maze
reversal learning | B6 | Escape latencies: KO = WT, but rate of
learning: KO < WT | [98] | | TABLE 2 Phenotypical Checkup of Fmr1 KO Mice: Behaviors Relevant to Variable Symptoms of Autism | | | | |---|-------------------------------|---|---| | Test | Background | Result | Ref. | | Anxiety | | | | | Elevated plus maze | FVB
B6
FVBxB6
FVBxB6 | KO = WT
KO = WT
KO = WT
KO less anxious than WT | [100]
[91,107]
[107]
[83] | | Thigmotaxis in open-field | B6
FVBxB6 | KO < WT
KO < WT | [94,101]
[83] | | Boli in open-field
Light-dark exploration | B6
B6 | KO < WT
Transitions between compartments: KO > WT
Time spent in both compartments: KO = WT | [94]
[82,101] | | Corticosterone response to
acute stress | B6 | Males:
Sham and 15 min: KO = WT
0 min: KO < WT
60 min: KO > WT
Females:
Sham, 0 and 60 min: KO = WT
15 min: KO < WT | [104] | | | B6 | Males:
No stress, 30 min stress: KO = WT
2 h stress: KO > WT | [103] | | Conditioned emotional response | B6 | KO = WT | [98] | | Learning and memory | | | | | Cross-shaped water maze | FVB
B6 | Correct trials: KO < WT
Escape latencies: KO = WT
Correct trials:
KO < WT
KO = WT | [102]
[98]
[98]
[102] | | Changing position of platform in
water maze | B6 | KO = WT | [97,98] | | E-shaped water maze | B6 | KO = WT | [89] | | Morris water maze training:
Hidden-platform condition | FVBxB6
B6
FVB | Escape latencies: KO = WT KO > WT KO > WT first four trials Escape latencies: KO > WT Rate of learning: KO = WT Rate of learning: KO < WT | [96,97,101]
[89]
[82]
[83]
[82,89,102]
[102] | | Visible-platform condition | B6 | Escape latencies: KO = WT | [82,96] | | Radial maze | B6
FVBxB6 | Working memory: KO = WT
Working memory: KO < WT the first 6 days;
reference memory: KO < WT; strong choice
design: KO = WT | [91]
[83] | | Barnes maze | FVBxB6 | KO = WT; during probe test: KO < WT | [83] | | Fear conditioning: context and
conditioned cue | FVB
B6
B6 | KO = WT
KO = WT
KO < WT | [102]
[98,101,102]
[97] | | Trace fear conditioning | B6 | KO < WT | [100] | | Conditioned eyelid blink reflex | B6 | KO < WT | [109] | | TABLE 2 (continued) | | | | |---|---------------|---|----------------| | Test | Background | Result | Ref. | | Learning and memory (conti | nued) | | | | Passive avoidance (latency to | B6 | KO = WT | [82] | | enter dark compartment) | FVB | KO = WT | [108] | | Lever press escape/avoidance
task | B6 | KO < WT | [113] | | Instrumental conditioning | B6 | Conditioning learning : KO = WT
Devaluation of reward and omission of lever
press : KO > WT | [73] | | Olfactory learning and memory
tasks | FVBxB6 | KO = WT | [83] | | Novel object task | FVBxB6 | KO = WT | [83] | | | FVB | KO < WT | [114] | | Motor abilities | | | | | Rotarod motor coordination and
balance | d B6 | KO = WT | [101] | | Aggression | | | | | Neutral cage aggression test | B6 | KO = WT | [91] | | Hyperactivity | | | | | Open field activity | B6 | KO > WT | [91,94,101] | | | B6 | KO = WT | | | | FVBxB6
FVB | KO = WT
KO = WT | [107]
[107] | | | FVB | KO = WT before 18 min
KO > WT after 18 min | [100]
[108] | | Activity cage | FVB | KO > WT | [114] | | Motor activity test | B6 | KO > WT | [82] | | Idiosyncratic responses to s | | KO - WI | [OZ] | | Auditory startle response | B6 | KO = WT, but increased response with | [101] | | Additional Statute response | | Fmr1gene containing YAC | | | | B6 | KO > WT at 70 and 80 dB; KO < WT at 120 dB | [107] | | | B6 | KO < WT at higher intensities, interaction
between genotype and intensity | [73] | | | FVB | KO < WT | [110] | | | FVB | KO = WT under 110 dB; KO< WT from 110 dB
and above | [108] | | | FVBxB6 | KO > WT at 80 dB; KO < WT at 100, 110, and
120 dB | [83] | | | FVBxB6 | KO = WT | [83] | | Prepulse inhibition | B6 | KO > WT | [73] | | | B6 | KO > WT at 67 dB (2 dB above background noise) | [107] | | | FVB | KO > WT | [110] | | Audiogenic seizures (AS) | FVB | KO after long loud sound and after age 10 weeks
KO >> WT (143 ± 5 days) | [110]
[115] | | | B6 and FVBxB6 | KO >> WT (45 days and under)
KO display AS, WT do not (21 days) | [108]
[83] | | | FVB | KO >> WT (30 days) | [83] | | Hot plate and tail-flick test | FVB | KO = WT | [100] | ### Shank mutant mice as an animal model of autism Juyoun Yoo, Joseph Bakes, Clarrisa Bradley, Graham L. Collingridge and Bong-Kiun Kaang The Shank family of scaffolding proteins (also known as ProSAP, cortBP, SSTRIP, Synamon and Spank) consists of three major isoforms—Shank1, Shank2 and Shank3—all of which are present in the brain, though with very different patterns of expression. Shank1 is expressed throughout most of the brain, except the striatum, being particularly highly expressed in the cortex and the hippocampus. Shank2 and 3 are also present in the cortex and hippocampus. Shank2 is almost absent in the thalamus and striatum, while Shank3 seems to be dominantly expressed in those regions. In the cerebellum, Shank2 is restricted to Purkinje cells, while Shank3 is restricted to granule cells [48]. In conclusion, the genetics of ASD have led to a focus on the glutamatergic synapse. Based on available evidence there does not appear to be a single causal deficit but rather various alterations in pre- and postsynaptic function, including changes in synaptic plasticity. Perhaps the most exciting results to emerge are the findings that, in mouse models, it is possible to reverse behavioural and physiological deficits with pharmacological treatments, indicating that the underlying cause may not necessarily be an irreversible developmental abnormality but rather an ongoing synaptopathy. Thus, a greater understanding of the glutamatergic synapse in rodent models of autism should aid in the development of effective therapies for ASD. ## Induced chromosome deletions cause hypersociability and other features of Williams-Beuren syndrome in mice Hong Hua Li¹, Madhuri Roy^{2†}, Unsal Kuscuoglu^{1†}, Corinne M. Spencer^{3†}, Birgit Halm¹, Katharine C. Harrison¹, Joseph H. Bayle⁴, Alessandra Splendore¹, Feng Ding¹, Leslie A. Meltzer², Elena Wright¹, Richard Paylor³, Karl Deisseroth^{2,5}, Uta Francke^{1,6*} The neurodevelopmental disorder Williams–Beuren syndrome is caused by spontaneous ~1.5 Mb deletions comprising 25 genes on human chromosome 7q11.23. To functionally dissect the deletion and identify dosage-sensitive genes, we created two half-deletions of the conserved syntenic region on mouse chromosome 5G2. Proximal deletion (PD) mice lack Gtf2i to Limk1, distal deletion (DD) mice lack Limk1 to Fkbp6, and the double heterozygotes (D/P) model the complete human deletion. Gene transcript #### Figure 5. Deletion mice have abnormal social behaviour - A. Partition test measures the time a test mouse spends at the partition that separates it from a partner mouse during three sessions: with a familiar partner, an unfamiliar partner and finally the familiar partner returned. The mean time at the partition per approach to the partition is shown for each test (top panel). The mean time per approach averaged across all three tests (bottom panel) shows that PD, DD and D/P mice exhibited greater social interest at the partition than WT. N = 12-17 per genotype, both sexes. B. In a direct social interestation test, only PD mice showed an increased - In a direct social interaction test, only PD mice showed an increased frequency of interactions during the 10 min test period. N = 12-17 per genotype. - genotype. C. In the social choice test, mice are placed in a three-chambered apparatus with a stimulus mouse in one chamber, and the percentage of time spent in the 'social' versus the 'non-social' chambers is recorded. Male PD and D/P demonstrated increased socialitie, N =8-ap or genotype. D. Abnormal social dominance behaviour of PD and D/P in a tube test. Tested - D. Abnormal social dominance behaviour of PD and D/P in a tube test. Tested mice are released into a tube against a control mouse. The one who backs out of the tube first is considered the loser. N=12-17 per genotype. Growth Defects and Impaired Cognitive—Behavioral Abilities in Mice with Knockout for *Eif4h*, a Gene Located in the Mouse Homolog of the Williams-Beuren Syndrome Critical Region Figure 5. Brain MRI analysis. A: Typical T2-weighted images from wild-type (WT; upper panel) and Eight knockout mitce (KO; lower panel). Fifteen contiguous coronal sections were acquired with a 0.85-mm thickness. Volume of anterior cerebrum was calculated from the first to the seventh image, volume of posterior cerebrum from image 8 to 12 and volume of cerebellum and brainstem from image 13 to 15. Be Volume measurement of whole brain; CR, cerebrum; CB, Se brain stem. "P< <0.01; "P< <0.01. CW volume measurements of the anterior and posterior cerebrum and respective selected structure: LV, lateral ventricles; CC, corpus callosum; HC, hippocampus; Ctx, cortex; Thal, thalamic-hypothalamic nuclet. "P < 0.05; "P < 0.01. (II) are 10 that separate the substitution of the statistical analysis was performed using the Student's Hest. Values of P < 0.05 were considered significant.