Animal Models of Hypoxic-Ischemic Brain Damage in the Newborn
Jerome Y. Yager

Controversy continues over which animal model to use as a reflection of human disease states. With respect to
perinatal brain disorders, scientists must contend with a disease in evolution. In that regard, the perinatal brain is
at risk during a time of extremely rapid development and maturation, involving processes that are required for
normal growth. Interfering with these processes, as part of therapeutic intervention must be efficacious and safe.
To date, numerous models have provided tremendous information regarding the pathophysiology of brain damage
to term and preterm infants. Our challenges will continue to be in identifying those infants at greatest risk for
permanent injury, and adapting therapies that provide more benefit than harm. Using animal models to conduct
these studies will bring us closer to that goal.
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creased relative risk for NE (adjusted odds ratio of
38.23).'" The role of FGR as it relates to outcome
is poorly understood. Although FGR is a common
risk factor for NE, whether it contributes to poor
adverse neurologic morbidity remains to be deter-
mined. Furthermore, whether FGR, either in isola-
tion or in combination with hypoxia at birth, is
detrimental to outcome is also unknown. As a
single indicator of moderate to severe NE, FGR
was the most strongly associated “marker” found
in the population-based study of Badawi et al.’
Other studies have clearly shown a relationship
between FGR and learning deficits and behavioral
problems of inattention and anxiety in 48% of
children assessed between age 9 and 11 years,'®
and poor school performance at age 12 and 18
years.*® Strong associations between FGR and CP
palsy have also been demonstrated.?>2*

Perhaps of even greater importance is the fact
that FGR placestheinfant at a much higher risk for
intrapartum asphyxia than infants of appropriate
weight for gestational age. In one study, 35% of
FGR infants exhibited fetal heart rate characteris-
ticsindicative of distress; other studies have shown
significant increasesin acid-base abnormalities and
serum lactate concentrations.*®2* More insight
into the role of hypoxemia as a confounding factor
for newborns with FGR has come from the Na-
tional Collaborative Perinatal Project.”® Assess-
ment at age 7 years revealed that in the absence of
hypoxia-related factors, neither symmetric nor
asymmetric FGR children were at higher risk for
neurologic morbidity compared with those without
FGR. In the presence of hypoxia, however, FGR
children were more likely to be neurologically
abnormal (CP or menta retardation) compared
with controls, and children with symmetric FGR
(in which body and brain weight are reduced com-
pared with brain weight being preserved) were at a
greater risk than those with asymmetric FGR.

Increasingly, the literature is reporting a very
strong role for chorioamnionitis as afrequent cause
of acquired brain damage in the perinatal period.?®
A recent meta-analysis of chorioamnionitis and CP
indicated a positive association among preterm and
full-term infants, with a relative risk of 4.7 for the
latter group.?” Similarly, maternal fever has been
linked with an increased incidence of neonatal
encephal opathy.?®?° Nelson et a*° examined the
blood of 31 children known to have CP and found
significantly higher concentrations of interleukin
(IL)-1, -6, -8, and -9; tumor necrosis factor (TNF),
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and various other cytokines compared with con-
trols. Reviews of the epidemiologic and cytokine
literature by Dammann and Leviton®*? clearly
support a role for inflammation/cytokines in neo-
natal brain injury.

Recognizing that the underlying causes of CP
and the developmental disabilities are not com-
pletely understood, the aforementioned predispos-
ing conditions (ie, antepartum and intrapartum as-
phyxia plus or minus FGR and infection) have
clearly been identified as risk factors for perinatal
neurologic morbidity. Each of these conditions is
reflective of an underlying cerebrovascular com-
promise to the brain, alone or in conjunction with
additional complicating factors. Each of these con-
ditions also has a spectrum of severity and, in turn,
manifests phenotypic outcomes ranging from pro-
found mental retardation and spastic quadriplegia
to poor school performance and attention difficul-
ties.

Models of perinatal injury are therefore meant to
mimic this broad and as-yet poorly understood
condition of the newborn human infant. In doing
so, the goas of an anima models are to (1)
contribute to our knowledge of the underlying
mechanisms of injury, (2) improve our understand-
ing of the evolution of injury and its outcome, and
(3) provide atemplate on which to develop and test
therapeutic strategies. To adequately meet these
goals, the animal model must have certain charac-
teristics reflective of its target. For the newborn
infant who has experienced a cerebrovascular com-
promise to the brain, models should (1) mimic the
etiological basis through which these injuries oc-
cur, (2) reflect the histopathologic spectrum of
injury to the developing brain, and (3) ideally
express the functional outcomes seen in the human
newborn infant and child. That the immature brain
is in constant biologic evolution during its poten-
tial exposure to cerebrovascular compromise
clearly complicates the development of animal
models reflecting this human condition.

Accordingly, the goals of this article are to (1)
review some of the relevant aspects of development
as they pertain to models of perinatal hypoxic-
ischemic brain damage, (2) review commonly used
models of hypoxic-ischemic injury to the newborn
brain, and (3) suggest future directions of investi-
gation that may help provide answers to an area of
pediatrics whose consequences have such a pro-
found effect on families and society in general.
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Rat (davs) 1] 7 14 Rirth T 14 21 28

Fig 1. Comparison of several parameters of brain development from the above species. Note the difference in duration, with
timing being in months for the human and sheep and days for the rat. *Brain Growth Spurt adapted from Dobbing. See text for

details regarding other parameters.

THE HUMAN NEWBORN CONDITION
Development of the Newborn Brain

An understanding of normal human brain devel-
opment is essential to evaluating the validity of
animal models developed to study the pathogenesis
of cerebrovascular compromise to the newborn
brain. In circumstances whereby the immature
brain is rapidly evolving, assimilating this know!-
edge with research relating to the development of
the anima model allows us to better correlate the
importance of our findings as they relate to the
human newborn.

The major events of neurulation (occurring at 3
to 4 weeks gestation), neurona proliferation and
migration (at 3 to 5 months gestation), organization
(at 5 months to years), and myelination (at birth to
years), are well outlined in many texts and review
articles®>* and thus are not detailed here. This
part of the review focuses on those aspects related
to neocortical development that may be influenced
by or atered in the pathogenesis of hypoxic-isch-
emic brain damage.

In humans, developmental processes in the ner-

vous system occur over periods of weeks to
months;*>¢ in comparison, in the rodent the same
processes occur in a matter of days (Fig 1). Pro-
liferation and migration of neurons in the human
brain occurs between 4 and 24 weeks of gestation
(ie, in midgestation), with neurogenesis occurring
first in the spinal cord and brain stem structures
and progressing rostrally thereafter, having been
largely completed by midgestation. The same
events in the rodent progress over a period of days
(gestational day 11 to 16) for the spinal cord and
brain stem, but extend to postnatal day 15 for the
neocortical and limbic system and hippocampal
structures.®” In humans, synaptogenesis, the neu-
robiological substrate for cell-to-cell communica
tion, begins gradually during the first few months
of gestation but does not reach its peak until the
first 1 to 2 years of life, and matures over several
years to adolescence.® In rodents, this process
occurs somewhat rapidly during the later part of
gestation through to the first 3 weeks of postnatal
life, corresponding to weaning of the rat pup from
its dam.*®
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Recently, attention has focused on the subplate
neuron. Subplate neurons are situated beneath the
cortical plate and are among the first cells formed
in neocortical development. Because they form a
population of cells at the interface of the develop-
ing cortex with the intermediate zone (ie, primor-
dia white matter), the subplate neurons are in a
position to interact with later-generated neurons as
they migrate into the cortex, and also to act with
many of the afferent projectionsto the neocortex as
they grow through the subplate layer. Several stud-
ies have provided evidence that subplate neurons
receive temporary synaptic connections and serve
as guides to thalamocortical axons during develop-
ment, and also to cortical efferents. Finally, given
its unique position in the developing nervous sys-
tem, the subplate neuron may be only transiently
functional and may no longer play a role postna-
taly.*® In humans, subplate neuron development
peaks at around 24 weeks gestation and declines
thereafter. In rats, this event corresponds more
closely to the end of gestation and the early post-
natal days of life to approximately postnatal day
40, at which point the number of cells has reduced
by dlightly less than half.**4*

The process of myelination deserves particular
mention, given the sensitivity of the oligodendro-
cyte to vascular compromise*** and the preva-
lence of periventricular leukomalacia (PVL)
among preterm infants. Differentiation of oligo-
dendrocytes lags substantialy behind the initial
waves of neurogenesis and follows axonogenesis.
In humans, myelination beginsin midgestation and
progresses over a protracted period to late child-
hood and early adolescence. In rats, this process
occurs during the first 2 days of life and extends to
well beyond weaning.*>*® In contrast studies of
sheep fetus suggest that myelination begins in
midgestation and is very near completion by
term.49’5°

Ontogenesis of Neurotransmitters

Neurotransmitters have qualitatively different
functionsin the newborn brain during devel opment
than in the adult brain. In the adult, neurotransmit-
ters are traditionally thought of as mediating or
modulating synaptic transmission between cells. In
the maturing nervous system, however, these same
neurotransmitters play fundamental roles in the
normal physiological processes of brain growth
and differentiation (Fig 2). Their role is no less
important in the pathophysiology of injury to the
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Fig 2. Graph depicting the timelines for the development
of excitatory amino acid development in the human and rat
using birth as a reference point. Adapted from Hattori et al,
Sanchez et al, and Rice and Barone. See text for details. Note
the shift to the right for neurotransmitter development in the
rat compare to human.

newborn brain®*>® and presents a complicated sce-

nario in the development of therapeutic interven-
tions for neonatal hypoxic-ischemic encephal opa-
thy.

In humans, development of the excitatory amino
acid receptor (NMDA) begins in the region of the
hippocampus and enterhinal cortex at midgestation
and pesks quickly at around 24 weeks, to levels
above those normally found in adults.>**® In rats,
this corresponds to a 150% to 200% overshoot in
NMDA receptor binding sites at 6 to 14 days
postnatal development.®*>8 The non-NMDA bind-
ing sites in humans also begin to develop in the
hippocampus, neocortical, and basal ganglia re-
gions around 24 weeks of gestation and peak above
norma adult levels near term, after which they
decline and remain at adult levels®* In rats, the
quinolinic acid receptor develops early and reaches
adult levels by 7 days postnatal age. The kainate
receptor, on the other hand, does not begin to
develop significantly until around 10 days postna-
tal age, and gradually increases until 21 days,
where it attains adult values.

y-aminobutyric acid (GABA), the predominant
inhibitory neurotransmitter in the brain, begins to
show expression in humans as early as 17 weeks,
and rapidly increases in density during midgesta-
tion to reach around 60% of adult concentrations at
term.>® Both excitatory and inhibitory GABA re-
ceptors have been identified in rats. Hence, during
gestation, activation of GABA, receptors causes
depolarization. This maturational excitatory func-
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tion persists for the first postnatal week and is
gradually transformed the more mature hyperpo-
larizing function over the first 3 weeks of life.®°

Neuropathology of Perinatal Asphyxia

What we know of the human newborn condition
stems largely from neuroradiologic investigations
of preterm and term infants who sustained asphyx-
ial events,®>® as well as from necropsy studies of
newborns who did not survive.®#%® From this in-
formation, it is quite clear that the pattern of injury
seen in human newborns is highly dependant on
the gestational age and on the duration and severity
of the insult. Hence we see a continuum of neuro-
pathologic lesions in the immature brain ranging
from periventricular white matter injury in the
preterm infant to parasagittal cerebral injuries in
the more mature term infant (Fig 3A and B).
Selective neuronal necrosisinvolving al regions of
the brain can occur regardless of gestational age.®®

Involvement of the deep cortical gray-matter
structures and brain stem pathology appears to
depend on the severity of injury. In that regard,
Pasternak and Gorey®’ reviewed their cases of
acute near-total asphyxiain term infants and found
a consistent pattern of injury in the subcortical
brain nuclel, including the thalamus, basal ganglia,
and brainstem, with almost complete sparing of the
cortical gray- and white-matter structures. In con-
trast, infants with injury predominantly to cortical
gray- and white-matter structures tend to have
insults characterized by partia or prolonged hypoxia
ischemia. Hence Sie et al®® reviewed the records
and magnetic resonance imaging (MRI) studies of
104 children with hypoxic-ischemic brain damage,
and found 3 different patterns of MRI images: (1)
PVL in preterm infants experiencing subacute or
chronic hypoxia-ischemia, (2) basal ganglia and
thalamic lesions in infants who experienced an
acute profound asphyxial event, and (3) multicystic
encepha opathy in term infants with perhaps pro-
longed mild to moderate hypoxia-ischemia super-
imposed by an acute or subacute event. Others
have found similar patterns of injury based on the
timing and duration of the insult.®®°

Recent advances in MRI have provided impor-
tant information on injury to the newborn brain,
particularly in relation to white matter injury. Inder
et al ° studied 34 infants (20 preterm and 14 term)
and reported for the first time the association be-
tween white-matter injury and a reduction in cor-
tical gray-matter volume, suggesting an anatomical
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correlate for the intellectual deficits often seen in
children with PVL. Subsequent studies have con-
firmed not only the sensitivity of MRI in detecting
white-matter lesions,”*"® but also the efficacy of
MRI techniques in correlating injury with intellec-
tual and behavioral outcome.”*"® Others have re-
ported on advanced MRI techniques using the
apparent diffusion coefficient (ADC) (the amount
of water movement) and anisotropy (the direction
of water movement) to determine abnormalities of
white-matter development in prematurely born in-
fants.”® Miller et al"® studied a cohort of 23 new-
borns, of whom 11 were classified as hormal, 7 had
minima white-matter injury, and 5 had moderate
white-matter injury. They found significant abnor-
malities in ADC in those infants with moderate
injury compared with the other 2 groups, and in
anisotropy in the frontal white matter in both
groups with white-matter damage. Importantly,
this study demonstrated the sensitivity that these
techniques can achieve in detecting injury in chil-
dren previously thought to be normal. The findings
are in keeping with recent reports indicating that
infants born prematurely are at higher risk not only
for abnormalities in motor function (eg, CP), but
also for the more subtle abnormalities of learning
and behavior. Bhutta et a’’ published a meta-
analysisthat reviewed the literature on the effect of
preterm birth on cognition and behavior. Their
results indicated that of the 1556 cases reviewed,
children born prematurely were at twice the rela-
tive risk for developing attention deficit hyperac-
tivity disorder (ADHD) and had significantly lower
cognitive scores compared with controls.

ANIMAL MODELS OF INJURY

The study of perinatal brain injury has seen
tremendous advances, and numerous models have
been adapted in the pursuit of enhancing our
knowledge, particularly at the biochemica and
molecular levels (Fig 4). In discussing this broad
and complicated area, my intention is not to be
al-inclusive, but rather to focus on those models
that appear to comprehensively cover the topic.

Monkey

The classic studies of Myers et a"®®° catego-

rized the patterns of neuronal injury and correlated
them with systemic, perhaps causative, abnormal-
ities. Importantly, these investigations were done
in primates. Term monkey fetuses were exposed to
true asphyxia (cessation of respiratory gas ex-
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ASpectrum of Neuropathologic Injury to the Immature Brain
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Fig 3. (A) Cartoon depicting the evolution of neuropathologic injury during the latter half of pregnancy in human newborn. Note
that white matter injury in the form of “periventricular eukomalacia” typically occurs in the premature infant, whereas cortical and
deep grey matter structures are more prone to injury later in gestation. (B) MRI images depicting evolution of damage and change
in topographical sensitivity of the newborn brain to hypoxic-ischemic injury. (a) DWI image of premature infant depicting
enhancement of white matter adjacent to lateral ventricles. (b and c) T1 weighted images of term infant indicating hyperintensity
of deep grey matter nuclei (b) and peri-rolandic fissure (c), in keeping with hypoxic-ischemic injury to the more mature brain.
(Photographs courtesy of Dr. J. Cure MD and Dr. A.J. Barkovich MD).

change) by covering the head with arubber sac and within 20 seconds by profound fetal bradycardia
clamping the umbilical cord at delivery. Thisled to and an accompanying decline in arterial pressure.
an immediate rise in fetal blood pressure due to an The blood pressure slowly dropped to become
increase in peripheral vascular resistance, followed pressure-passive at about 12 to 14 minutes postin-
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Fig 4. Simplified diagram of pathophysiologic mechanisms involved in hypoxic-ischemic brain injury. Note the process of
hypoxia-ischemia which triggers the process leading to cell death may take only minutes to hours, whereas reperfusion and the
subsequent phase of recovery during which neuronal and glial injury continue lasts days to weeks (Modified from Vannucci [1990]

and Bona et al [1999]).

sult. Despite this, the fetal heart rate remained at
approximately 60 beats per minute for up to at least
35 minutes. In conjunction with these changes
were arapid decline in fetal oxygen content, arise
in carbon dioxide, and a fal in pH to approxi-
mately 6.9 during the first 12.5 minutes. Interest-
ingly, fetuses resuscitated after 20 minutes had
extremely high mortality. However, at least 12
minutes of total asphyxia was required to produce
any signs of neuropathologic injury. These results
coincide with the findings from clinical studies that
examined the duration of prolonged fetal heart rate
deceleration required for neurologic morbidity and
found that a period of at least 17 minutes was
required for morbidity to occur.®? Neuropathol ogi-
cally, these monkey fetuses displayed damage pre-
dominantly within the brainstem.

In models of partial ischemia, monkey fetuses
remained in utero, and mothers were manipulated
such as to render them hypotensive. These studies
indicated that term fetuses can tolerate arterial

oxygen pressure reductions to 30% of normal, but
reductions to 10% of normal for periods of upto 5
hours cause them to become increasingly brady-
cardic and hypotensive. Physiologicaly, these fe-
tuses were profoundly hypoxic and acidemic to
pH < 7.0. At birth, they often displayed opistho-
tonus and decerebrate posturing as well as gener-
alized convulsions. Pathologically, the brains
showed widespread cortical tissue necrosis, and
those who survived for longer periods before sac-
rifice displayed evidence of parasagittal infarction,
and porencephaly.

Based on investigations over 2 decades, Myers
et a’®8 described 4 patterns of brain damage
relating to the degree of hypoxia/anoxia and
whether or not it was combined with acidemia. In
addition to the cohorts described earlier, fetal term
monkeys exposed to severe hypoxiain the absence
of acidemia devel oped predominantly white-matter
injury, whereas those experiencing partial pro-
longed asphyxia combined with a terminal total
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asphyxial event experienced damage focused on
the basal ganglia and thalamus. Thus both the
clinical and pathological changes produced in
these term monkeys by various degrees of intra-
uterine asphyxia closely resemble the changes ob-
served in perinatally damaged humans.

Sheep
Gray Matter

The sheep has served as an effective large ani-
mal model for the study of perinatal asphyxia
Gunn et al®*®® described the neuropathol ogic con-
sequences after umbilical cord occlusion in near-
term fetal sheep. Brief (10-minute) periods of cord
occlusion resulted in transient asphyxia accompa-
nied by hypotension and bradycardia, together with
prolonged neurona depression demonstrated on
electroencephalography. Histologically, areas of
selective neurona necrosis were found in the hip-
pocampus. These studies were subsequently ex-
tended so that near-term sheep fetuses were ex-
posed to repeated brief episodes of in utero
hypoxia-ischemia for 3 10-minute intervals, sepa-
rated by 1 or 5 hours. The findings were compared
with results from a single 30-minute episode of
hypoxia-ischemia. Repeated episodes at 1-hour in-
tervals resulted in a greater degree of neurona
injury; however, episodes separated by 5-hour in-
tervals produced a shifted distribution of injury
involving the striatum amost exclusively. When
episodes were repeated at much shorter intervals
(every 2.5 to 5.0 minutes) but far more frequently
(until arterial pH reached 6.8), the damage was
diffuse and extensive, causing infarction of the
parasagittal cortex, thalamus, and cerebellum in
40% of the animals and diffuse selective neuronal
necrosis in the remainder.®”

Experiments in which near-term fetal sheep
were exposed to prolonged hypoxia-ischemia of
30, 60, or 120 minutes duration were done to
correlate the duration of insult with histopathologic
injury.3* Uterine artery occlusion in this setting
produced severe hypoxemia, hypercarbia, acidosis,
and bradycardia. Neuronal injury in this model was
inversely correlated with blood pressure during the
insult, such that the lower the blood pressure, the
greater the damage, but, interestingly, no associa-
tion with hypoxemia was found. Areas of greatest
sensitivity included the parasagittal cortex, the
CA;_; regions of the hippocampus, the striatum,
and the thalamus. These findings were also con-
firmed by Williams et al.®
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In a similar model of near-term fetal asphyxia,
Bagenholm et al® measured the concentration of
free-radical production in the venous effluent of
term sheep exposed to 30 minutes of acute as-
phyxia. They found a more than 2-fold increase in
the production of free radicals during the early
stages of reperfusion compared with nonischemic
control animals.

White Matter

Recent years have brought an increasing focus
on models of periventricular white-matter damage.
Ting et a® were the first to elucidate this in sheep.
These investigators developed a model whereby
midgestational (ie, 68 to 85 days gestation) sheep
fetuses were exposed to 10% oxygen for 2 hours.
Of the 38 fetuses subjected to hypoxia, 29 were
concomitantly rendered hypovolemic. The ewes
and fetuses were then alowed to recover for 3
days, at which time they were delivered and sac-
rificed for neuropathologic assessment. Of the 38
fetuses, 10 died before delivery, and only 8 showed
evidence of gross and microscopic brain injury. In
that regard, the hemispheric white matter was most
severely damaged, with some brains showing evi-
dence of hemorrhage and cystic degeneration. It
should be noted that damage was also noted in the
basal ganglia of these animals, as well as in the
dorsolatera regions of the cortex, athough to a
lesser extent than white-matter damage. Of partic-
ular note was the finding that only those fetuses in
which mean arterial blood pressure fell below 30
mmHg showed brain damage, whereas none of
those who maintained their blood pressure did,
irrespective of hypoxia.

Petersson et a® detailed the neuropathologic
injury to white matter in 126-day (0.85) gestation
ovine fetuses after carotid artery occlusion for 30
minutes and recovery for either 48 or 72 hours.
These investigators found both gray- and white-
matter involvement, the latter of which was char-
acterized by a reactive gliosis and the loss of
myelin basic protein in oligodendrocytes. Reddy et
a®' compared the neuropathologic consequences
of cerebra hypoperfusion for 30 minutes in 0.65
gestation and 0.9 gestation fetal sheep and con-
firmed the topographical specificity of white-mat-
ter injury. However, both ages of sheep displayed
parasagittal cortical damage and selective neuronal
necrosis in the thalamus and striatum. The preterm
fetuses developed subcortical infarcts with more
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rapidly evolving necrosis of the white matter com-
pared with those closer to term.

Further investigations in the sheep have begun
to outline the pathogenic mechanisms of injury to
the immature fetal sheep brain. I|keda et al%
measured levels of thiobarbiturate-reactive sub-
stances (TBARS) within gray and white matter
after 60 minutes of umbilical cord occlusion and
found significantly higher levels in the frontal and
parietal white matter than in gray matter. Signifi-
cantly higher concentrations of glutamate were
also detected using intracerebral microdialysis in
the white matter of fetal sheep at 0.85 gestation
after repetitive umbilical cord occlusion.®*

Most recently, severa laboratories have devel-
oped models of white-matter injury in sheep after
systemic endotoxemia %> In this regard, Mallard
et a® compared the use of systemic asphyxia to
endotoxemia for inducing injury resembling PVL
in fetal sheep of age 93 to 96 days (or 0.65 of
gestation). Asphyxia was promoted by umbilical
cord occlusion for 25 minutes, whereas systemic
endotoxemia was caused by intravenous injection
of Escherichia coli lipopolysaccharide. Interest-
ingly, the white matter appeared particularly sen-
sitive in both models, as characterized by micro-
glia infiltration, loss of oligodendroglia, and
damage to astrocytes. In contrast, however,
whereas systemic endotoxemia caused selective
injury to white matter, umbilical cord occlusion
was less specific and also resulted in neurona
necrosis in subcortical regions including the stria-
tum and hippocampus. Duncan et a® also used a
model of systemic injection of lipopolysaccharide
over 5 days in fetal sheep at 0.65 gestation, and
found that after the injection, particularly over the
first 2 days, there was an acute decrease in both
mean arterial blood pressure and partial oxygen
pressure. This was accompanied by an increase in
lactate and acidosis. Although statistically signifi-
cant only over the first 2 days of injection, these
data clearly show that these alterations occurred
over 4 days of injection. Interestingly, the data
indicate that in fact the endotoxemia model of
white-matter injury is a model that combines both
inflammation and ischemia as part of its patho-
physiologic contribution to white-matter injury.
These investigators also found an elevation of IL-6
during the first 6 hours of injection, and indicated
asimilar acute increase in TNF-« within the first 2
hours. Histopathologicaly, diffuse white-matter
injury was seen in the magjority, with specific
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periventricular involvement occurring in 1/3 of the
animals. Dalitz et al®’ further demonstrated the
significant influence of endotoxin by administering
lipopolysaccharide to 11 catheterized fetal sheep at
0.7 gestation, then measuring fetal cerebral blood
flow and placental flow using microspheres. Their
findings showed that although fetal cerebral blood
flow did not decrease, oxygen delivery did. Spe-
cifically, both cortica and white-matter oxygen
delivery decreased by 36% of contral at 4 hours
postinjection and by 28% of control a 8 hours
postinjection, and that placental blood flow de-
creased by 54% at 4 hours postinjection and by
43% at 8 hours postinjection. These data clearly
support the role of infection in causing not only an
inflammatory response, but a hypoxic response as
well.

Rats

By far the most commonly used anima for
models of perinatal asphyxia is the rat. In the
immature animal, this model was introduced by
Vannucci’'s group in the early 1980s and used the
combination of unilateral common carotid artery
ligation with 8% oxygen®® in a 7-day-old rat pup.
The authors described the pathological conse-
quences of this insult, particularly within gray-
matter structures, as columnar regions of selective
neuronal necrosis through to infarction. Chroni-
cally, cystic infarction of the cerebral cortex may
be seen within the distribution of the middle cere-
bral artery territory, resembling the formation of a
porencephalic cyst. Although the myelinogenic
zones of vulnerability were discussed in thisreport,
until recently these findings had largely been ig-
nored.

Gray Matter

Perhaps one of the main advantages of the rat
model isthat it has been so well characterized over
the years, largely by Vannucci and colleagues.®® In
this regard, the 7-day-old rat pup has been vari-
oudy likened to a 32- to 34-week-old human
infant. The physiological parameters of the model
have shown that during the insult, the rat pup
becomes hypoxic in combination with being hy-
pocapneic as a result of hyperventilation. This
results in a compensated metabolic acidosis and
alows for anormal pH despite the lactic acidemia.
Mean systemic blood pressure declines by approx-
imately 25% during the hypoxic-ischemic epi-
sode.**1% Regional cerebral blood flow measure-
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ments indicate a reduced blood flow to between
17% and 40% of control, with those areas most
vulnerable to damage displaying the lowest blood
flow.°:192 Cerebral metabolic correlates indicate
a depletion of intracellular glucose, accompanying
lactic acidosis, and a near-complete loss of high-
energy phosphates within the hemisphere ipsilat-
eral to the common carotid artery ligation.*%3
During recovery, adenosine triphosphate replen-
ishes rapidly, although a secondary decline occurs
within the first 24 to 48 hours of recovery. The
findings appear consistent with a relative lack of
substrate (glucose) compared with oxygen as an
underlying causative mechanism of cell death, in
keeping with the findings that the contralateral
hemisphere appears norma even though it has
been exposed to hypoxia in the absence of isch-
emia %1% Others have documented an increase
particularly in the striatum of excitatory amino
acid release,'®® and the accumulation of intracel-
lular calcium that arises during the terminus of the
insult and into recovery.'® Pathologically, cere-
bral edema evolves over a period of several days,
peaking at 72 hours in those animals ultimately
having the most significant damage.™'° Histologi-
caly, a gradation of injury is observed that corre-
lates in a linear fashion with the duration/severity
of the insult.®**'® Hence damage commences
after 60 minutes of hypoxiaischemia and
progresses to produce infarction by 90 minutes.
Neocortical damage often appears in a columnar
distribution. There is also evidence of necrosis of
the subcortical gray-matter structures and periven-
tricular myelinogenic foci.

Hagberg et a*** nicely delineated the proinflam-
matory response that occurs during recovery in this
model. In thisregard, adistinctive IL-1 and TNF-«
response was seen in the first 24 hours, accompa-
nied by chemokines and macrophage inflammatory
protein. In the next phase, neutrophils transiently
invade the lesion between 12 and 24 hours, fol-
lowed by microglia/macrophages and astrocytes.
The latter group persists for upwards of 42 days,
with natura Killer cells being evident from 24
hours and lymphocytes beginning to infiltrate at
the end of the first week after the insult.

Severa others have developed modifications of
the Rice-Vannucci model. Renolleau and col-
leagues™™>**” studied a model of transient unilat-
eral hypoxic-ischemic injury in 7-day-old rats and
found that with reperfusion, the inflammatory re-
sponse was much more robust and occurred in a
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shorter time frame, augmenting the extent of in-
jury. Similar results were reported by Derugin et
a8 and Ashwal et al.** Schwarz used amodel of
bilateral common carotid artery ligation that re-
portedly produced a more uniform and severe neo-
cortical infarction of greater reproducibility to the
unilateral model. Unfortunately, neuropathology
was described at only 3 days of recovery, and in
this investigator’s experience, the bilateral ligation
model has an extremely high mortality rate beyond
72 hours (Yager et a, unpublished data).

White Matter

As for gray-matter injury models, recent years
have seen the devel opment of numerous rat models
focusing on white-matter injury. In our laboratory
we have developed a model of transient bilateral
common carotid artery ligation for 5- to 10-minute
periods. Assessment of the neuropathologic find-
ings a 72 hours of recovery show evidence of
cystic infarction involving the periventricular re-
gions of the brain, reminiscent of those seen in
PVL in the human neonate (Fig 5).*® Further elab-
oration of this model has shown that the cells most
sensitive to the ischemic injury are O4 oligoden-
droglial progenitors, which are particularly sensi-
tive to the development of reactive oxygen species
during reperfusion.

Models of periventricular white-matter injury
involving a hypoxic/ischemic insult in rats have
aso come from Uehara et a,**® who induced
white-matter injury after permanent bilateral com-
mon carotid artery ligation in P5 rats, and Cai et
al,*** who studied permanent bilateral artery liga-
tion induced in Pl rats and assessed the neuro-
pathologic consequences on days P7 and P14 of
recovery. The latter group found a reduction in O4
staining cells, an increase in microglia/macro-
phages, and a reduction in myelin basic protein on
P7 but not on P14, specifically within white-matter
structures, again indicating the vulnerability of the
oligodendrocyte to damage from ischemia at this
stage of development.

Back et a***"1?2 has done the important work
of delineating the rat oligodendroglial cell lineage
and correlating this with the human lineage, to
identify the correct timing for using this model as
one of PVL. This group has identified that the
window of vulnerability for white-matter injury
precedes myelination and coincides with a time
when the late oligodendrocyte progenitor is the
major target. In humans, this coincides with the 24-
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Fig 5. (A) Coronal view of premature 24 week infant with evidence periventricular cystic leuckomalacia. (B and C) Anterior and
posterior coronal views of 7 day old rat model following bilateral transient hypoxia-ischemia for 10 minutes. Pathologic sections
taken at 72 hours of recovery. Note cystic evolution of lesions in periventricular region, resembling that seen in the human infant.
Dashed arrow pointing to region with in the corpus callosum, and solid arrow indicating region of myelinogenesis.

to 32-week time frame during which PVL most
commonly occurs in humans and the P2 to P5 time
frame for rats, recognizing that white-matter injury
does occur outside these age groups in both hu-
mans and rats.

Infectious/inflammatory models of PVL have
also been developed, given the epidemiologic data
suggesting a role for clinical and subclinical cho-
rioamnionitis as an etiological factor in the devel-
opment of cerebral palsy in children30123125
Yoon et a'?® created an ascending infection and
chorioamnionitis model using E. coli in timed
pregnant (0.70 of gestation) rabbits. White matter
lesions were found in about 1/2 of those fetuses
infected, but in none of those treated with saline.
Histologically there was evidence of karyorrhexis
and disorganization of white matter, along with
evidence of apoptosis. In more recent studies by
Debillon et al,*?"** maternal inoculation of rab-
bits with E. coli at 0.80 gestation resulted in
consistent white-matter injury, with 25% of the
brains exhibiting evidence of periventricular
white-matter cysts. Interestingly, like Yoon's ex-
periments, this study pointed out the importance of
treating the pregnant rabbits with antibiotics, be-
cause mortality was almost 100% if no treatment
was provided. In this model focal white-matter
cysts, accompanied by a robust inflammatory re-
sponse and diffuse cell death, which mimic the

white-matter damage seen in extremely preterm
infants, occur in the absence of a detectable neo-
cortical inflammatory response.

FETAL GROWTH RETARDATION

Although not specifically the topic of this re-
view, the contribution of FGR to neonatal neuro-
logic morbidity is significant and is clearly amajor
complicating feature in those infants presenting
with a neonatal encephaopathy. FGR aso en-
hances the likelihood of asphyxia occurring around
the time of birth. Moreover, clearly one of the
major etiologies of FGR is chronic placental insuf-
ficiency or hypoxemia. In this regard, Many et
al*° examined the neurologic and intellectual out-
comes of FGR infants born to mothers with and
without preeclampsia They found a significant
difference between the 2 groups, with average 1Qs
of 85.5 in the preeclamptic group and 96.9 in the
non-preeclamptic group. Unfortunately, no normal
controls were used in this study. Toft et al®3*
measured gray-matter volumes in FGR infants
with MRI and found them significantly decreased
compared with controls.

Several animal models of FGR as it relates to
neurologic outcome have been developed; | will
touch on a few of these here. Trescher et al**?
induced growth retardation in newborn rats by
uterine artery ligation. Once born, the pups were
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allowed to nurse normally with their dam for 7
days, at which time a hypoxic-ischemic insult was
induced. These investigators found that the FGR
rat pups had less brain damage compared with
controls. Unfortunately, once delivered, the pups
were no longer restricted. In the fetal lamb, Mal-
lard et al**3 induced chronic fetal hypoxemia from
gestational days 120 to 140. After sacrifice, the
fetal brains exhibited evidence of severe gliosis
and decreased myelination. A reduced number of
Purkinje neurons was seen in the cerebellum. This
same group of investigators then assessed the
learning ability and behavior of the animals be-
tween 2 and 6 weeks after birth.*** In generd, the
low birth weight lambs did more poorly than their
counterparts, but it was difficult to conclude
whether this was a product of their preterm birth.

In the guinea pig, unilateral uterine artery liga-
tion at 30 days' gestation (term is 60 days) resulted
in significantly larger cerebral ventricles and re-
duced cortical, striatal, and hippocampal volumes
compared with controls (the latter of which was
due to a reduced number of neurons in both the
hippocampi and the cerebellum).** In the hip-
pocampus, evidence also suggests a decrease in
dendritic spine outgrowth as a result of chronic
placental insufficiency.>*® These findings have
raised questions about the possible relationship
between growth restriction in the newborn and
onset of schizophrenia later in life.*”

CONCLUSIONS

Controversy continues over the appropriate
model to use when attempting to mimic the clinical
and pathophysiologic aspects of human perinatal
brain injury.®® It is clear, however, that tremen-
dous progress has been made regarding the under-
lying mechanisms of perinatal brain injury, and
that all models have contributed to this progress.
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Clearly the larger anima models, such as sheep,
provide better access to the ongoing physiological
parameters that arise during in utero or antenatal
events. These issues will become increasingly im-
portant as we develop methods for ongoing mon-
itoring, and in determining the physiological con-
sequences to the fetus during chronic intrauterine
ischemia. Small anima models clearly have an
advantage when it comes to a better understanding
the biochemical consequences of perinatal brain
injury, as well as assessing longstanding neuro-
pathologic endpoints and behavioral outcomes.*3%4°

Yet despite all of the advances, adaptation of
neuroprotective drugs to the clinical setting has
been unsuccessful. Of the more than 49 agents
tested in more than 114 clinical stroke trials, none
has demonstrated proven benefit.**

In the newborn infant, drug trials (except for
those related to hypothermia) have essentially been
nonexistent. This is because in the human new-
born, oneisfaced with the much more complicated
scenario of treating perhaps not only the fetus, who
is in a state of rapid development, but aso the
mother. Once the insult has occurred, treatment
may involve applying therapeutic strategies that
may interfere with the normally and rapidly devel-
oping brain of the immature newborn, perhaps
causing more harm than good. Under these circum-
stances, we must be very clear that the benefit of
therapy outweighs any risk to either the patient or
mother.

This is the challenge for physicians caring for
newborns in the future. Irrespective of how great
our understanding of the mechanisms of injury, we
must be able to identify, with a high degree of
specificity, those infants who are indeed at risk for
subsequent neurologic morbidity and evaluate
what that morbidity might be. Anima models hold
great promise in this application.
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