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Autism is a common and heterogeneous childhood

neurodevelopmental disorder. Analogous to broad syndromes

such as mental retardation, autism has many etiologies and

should be considered not as a single disorder but, rather, as

‘the autisms’. However, recent genetic findings, coupled with

emerging anatomical and functional imaging studies, suggest a

potential unifying model in which higher-order association

areas of the brain that normally connect to the frontal lobe are

partially disconnected during development. This concept of

developmental disconnection can accommodate the specific

neurobehavioral features that are observed in autism, their

emergence during development, and the heterogeneity of

autism etiology, behaviors and cognition.
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Introduction
Autism spectrum disorders (ASDs) form a heterogeneous,

neurodevelopmental syndrome for which there is yet no

unifying pathological or neurobiological etiology. It is

defined by clinical assessment and onset of three core

disturbances before three years of age: atypical social

behavior; disrupted verbal and non-verbal communi-

cation; and unusual patterns of highly restricted interests

and repetitive behaviors. However, across these core

features there are significant differences in the extent

and quality of symptoms; for example, although language

problems are fundamental, delay in spoken language is

observed in only half of ASD subjects [1,2]. Other associ-

ated, but non-core, features such as mental retardation are

also variable, and current data suggest that <50% of all

individuals who have autism present with significant

cognitive impairment [3]. Social impairments can also
www.sciencedirect.com
be expressed in different ways — some individuals

who have ASD display an aloof style of social interaction,

whereas others actively seek personal interactions, albeit

in a socially odd manner [4,5]. Similarly, although onset

before age three is mandatory in the current diagnostic

scheme, there also are major differences in developmen-

tal course, with some children manifesting signs of the

disorder from early infancy and others experiencing beha-

vioral regression in the second or third year of life. Finally,

as might be predicted from the clinical picture, treatment

responsiveness also varies significantly among children

with autism, and two children who appear the same at age

three can show markedly different developmental trajec-

tories at later ages.

If one considers this clinical heterogeneity, the lack of

correlation between occurrence of different deficits

(including the core features) [6], and also the genetic

heterogeneity [7�,8], it might be more constructive to think

of ASDs as ‘the autisms’ than as a unitary syndrome

(Figure 1). Thus, research efforts have the multiple goals

of explaining the etiology of ASDs and of understanding

the syndrome-specific and non-specific factors that influ-

ence the variability in relative risk, in developmental

course of symptom expression, in treatment responsive-

ness and in co-occurrence of medical and mental health

dysfunctions in ASDs [9].

Research into the biological and genetic basis of the

autisms is in its infancy, so current etiological view-

points are necessarily primitive. Here, we provide a

synthesis of data published mostly in the past two years

that support the emerging hypothesis that the autisms

result from disconnection of brain regions that are

highly evolved in humans and that are involved in

higher-order associations [10,11] (in other words, that

ASDs form a ‘developmental disconnection syndrome’).

This hypothesis is analogous to the concept of focal

disconnection syndromes put forth 40 years ago by

Norman Geschwind, in which disruptions in connec-

tivity between higher association and multimodal cor-

tical regions lead to specific disorders of cognition

[12,13]. However, owing to the developmental nature

of the autisms, disconnection in the case of ASDs is not

primarily a disruption of previously connected regions,

as in the original disconnection syndromes, but rather is

a failure of their normal development that might have

diverse etiologies.

Thus, developmental disconnection in the ASDs could

include a weakening of already formed connections, or a
Current Opinion in Neurobiology 2007, 17:103–111
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Figure 1

Here we emphasize some of the many possible etiological features (genetic and environmental heterogeneity; blue circles) and the clinical or

syndromic heterogeneity (green circles) within autism spectrum disorder, in addition to the myriad of neurodevelopmental processes that might be

disrupted to cause disconnection (central arrowed box). Broken lines emphasize areas where the extent of the contribution to the disorder remains to

be defined relative to the contributions made by other factors. Although we postulate that developmental disconnection is a unifying theme to explain

the pathophysiology of the autisms, we need to emphasize that little is known about the specific relationship between etiologies, mechanisms and the

resulting phenotypes. The enormous complexity and heterogeneity, from the causal–mechanistic levels to the observed phenotypes, needs to be

clearly acknowledged; hence the need to reframe the syndrome of autism as ‘the autisms’. Because the genetic architecture of the autisms is not yet

known, we list known causes, such as genetic syndromes (Fragile X, Joubert and Timothy syndromes) in which ASD can be observed, and

acknowledge the likely contribution to the autisms from many distinct forms of genetic variation (including common and rare variation) and from

environmental factors. The term ‘autisms’ reflects not only that ASD is based on multiple etiologies but also that there are distinct clinical entities

whose phenotypic overlap and etiologies remains to be defined. For example, what features define the �1/5 of ASD subjects who have macrocephaly?

Is it one relatively distinct pathway that is disrupted, or many molecular etiologies that converge on big brains? Furthermore, do those who have

macrocephaly comprise a cohort enriched for seizures and regression, and are these other features related to specific etiologies? A similar set of

questions can be applied to those who have developmental regression and other phenotypes. In addition, it remains to be determined whether the

various clinical phenotypes relate not only to specific causal factors but also to specific intermediate developmental processes that underlie brain and

behavior, such as neurogenesis, neuronal migration, axon pathfinding, synaptogenesis, synaptic plasticity and regionalization.
failure of certain connections to establish correct organ-

ization de novo. From a neurobiological perspective, the

affected stages of development could include prenatally

determined histogenic events such as neuronal migration

and axon pathfinding, which establish proper positioning

and patterning of basic connectivity, and postnatally

regulated features of dendritic development, synaptogen-

esis and pruning. At these postnatal stages, even subtle

disturbances in timing might influence connectivity and

disconnectivity. Disrupting basic histogenic processes
Current Opinion in Neurobiology 2007, 17:103–111
across an extended period of development and matu-

ration in humans, which begins in utero and extends well

into childhood [14,15], provides an obvious point of

convergence of interactions between genes and environ-

mental factors that influence development. Studies in

monkeys indicate that, although many developmental

events such as neuron production and migration begin

simultaneously across the cerebral cortex, differences in

the duration of histogenesis between functional areas

provide opportunities for differential disruptions that
www.sciencedirect.com
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depend on the timing of the environmental insult [16].

For example, neurons that form agranular association

cortices in frontal regions are produced and migrate to

their destinations in two-thirds of the time needed to

assemble primary sensory granular cortices.

Heritability of the autisms
Based on twin and family studies, the autisms are among

the most highly heritable common neuropsychiatric dis-

orders [17–20]. The risk to a sibling born to a family in

which there is already an autistic proband is estimated to

be 25–100 times greater than the risk for the general

population [21]. The severity of the three core disturb-

ances varies across the autisms, but many of the core and

associated features show familial clustering [1,22–24] and

evidence of heritability [25]. Recent use of complex

statistical models to examine a large cohort of twins from

the general population whose autistic-like traits ranged

from none to the extremely severe (i.e. ASDs) suggests

that the three core traits are each highly heritable, albeit

owing to different genes and modest non-shared environ-

mental effects [26��]. The likely genetic heterogeneity

among the three key components of the autisms suggests

that examination of populations in which autistic-like

traits are well characterized is a sound strategy for defin-

ing the underlying risk. The effects of such genetic risk

factors are likely to converge on the modulation of inter-

related neurodevelopmental events that broadly affect

the physical and functional connectivity of higher-order

association areas of the brain. Although we posit that

development of the autisms requires a functional discon-

nection of these cortical regions from one another, it also

is likely to include or be partially mediated by abnorm-

alities in the development of subcortical regions that

connect to these areas. In the remainder of this review,

we focus on the cerebral cortex as a nexus that underlies

the core disruptions observed in the autisms.

Limited clues regarding pathophysiology of
the autisms
The histopathology of the cerebral cortex in the autisms

as observed to date indicates that there is only minor

disruption to the fundamental radial and tangential organ-

ization of neurons and glia [27]. There are reports of

altered packing density of cells, minor and highly variable

disruption of dendritic orientation, reduced size and

spacing of radial minicolumns of neurons in different

cortical areas including the frontal lobe [28�,29], and

selective reduction in cell number in some forebrain

structures [30]. Whether or not disruption of the columnar

organization of the cortex is the primary problem, the

evidence, albeit based on small numbers, indicates that

there are subtle (i.e. microscopic) but nonetheless wide-

spread neuronal abnormalities throughout the cortex [22].

These limited studies together suggest that the autisms

might be characterized by distributed atypical develop-

ment.
www.sciencedirect.com
The general trend of larger head size for individuals who

have autisms is consistent with the concept of more

widespread circuitry disturbances; macrocephaly is

observed in �20% of children who have ASDs [31–33],

and some regions of the cerebral hemisphere can remain

enlarged into adulthood [34]. Although the neuroanatomy

of macrocephaly in the ASDs has not been finely deli-

neated and findings vary, largely owing to small sample

sizes, preliminary studies suggest that areas of both white

matter and gray matter are abnormally large throughout

many regions of the cortex, including frontal, temporal

and parietal lobes [35–37]. However, the cortical changes

are likely to be far more complex than simple increases in

size: there can also be reduction of certain white matter

tracts, depending on the age and subtype of autism

represented in the studied population [38�]. The size

of white matter tracts (which reflects axon arborization

and myelination) and the neuron numbers, neuron

densities and dendritic arborizations in gray matter all

are features that might contribute to brain size, and that

are developmentally regulated over an extended prenatal

and postnatal time period. This period includes the most

temporally extended processes in brain development:

synapse formation, synapse pruning and myelination.

The increase in brain size in typical children over time

is due to early growth of gray matter followed by pruning

of dendrites and synaptic structures, combined with major

growth of white matter as it undergoes myelination. A

recent study suggests that cognitive skills are more sig-

nificantly correlated with the developmental trajectory of

brain volumes over time than with static brain volume

[39]. Thus, it will be important to delineate further the

longitudinal pattern of specific brain volumes over time in

the autisms. Finally, data from neurogenetic syndromic

disorders, in which co-occurrence of autisms and altera-

tions in synaptic organization are common [40], are con-

sistent with a developmental disconnection model.

A model of disconnection, irrespective of the underlying

developmental mechanisms, needs to account for the

preservation or even enhancement of certain functions

and for the specificity of deficits observed in the autisms.

Although the syndromes often overlap, the autisms are not

synonymous with global intellectual disability or mental

retardation. Thus, as alluded to by Frith [10], we propose

that to result in the autisms, the key disconnection must be

between several frontal lobe and temporal lobe multi-

modal higher-order association cortices (Figure 2) — for

example, a combination of frontotemporal, frontolimbic,

frontoparietal and interhemispheric connections, as

suggested previously by other authors [38�,41�,42–44].

From a developmental perspective, the model would

include disruption of the initial architecture of connectivity

and local circuits, which would change the influence of

experience-dependent processes that occur subsequently

and that are crucial for continued development and reor-

ganization of connections. Specifically, disconnection of
Current Opinion in Neurobiology 2007, 17:103–111
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Figure 2

Developmental disconnection in autism. Disconnection between cortical areas in the autisms can be heterogeneous and is represented by

reduced size (illustrated by thinner lines) of certain callosal tracts (red) and frontotemporal connections (yellow). Overconnectivity (illustrated

by thick green lines) between certain cortical areas might also lead to enhanced function in certain domains. At the level of local circuits (insets),

the effects of disruption to long-range inputs can also be influenced by altered inhibitory input (blue broken lines), which is essential for the proper

maturation and stabilization of connectivity.
dorsolateral prefrontal regions and anterior cingulate cortex

from other regions necessary to develop joint attention in

early infancy, which is the foundation of language and

social behavior, would probably have widespread rever-

berations during development [44].

That such deficits are present in the autisms is supported

by an emerging literature on decreased functional con-

nectivity that involves higher-order processing [45–47],

and by data that link anatomical differences in key

pathways between these regions to the behaviors and

cognitive processes that they underlie (e.g. [36,44]). For

example, the size of the genu of the corpus callosum,

which carries reciprocal fibers connecting the left frontal

and right parietal cortices, is positively correlated with

functional connectivity in tasks that require the integ-

ration of language functions and visuospatial imagery

[38�,45]. In addition, some people who have ASDs show

distinct alterations in the frontal lobar asymmetries of

multimodal language cortex, suggesting that there is

disruption of the interhemispheric pathways and the

perisylvian intrahemispheric distributed language sys-

tem [35]. From a neurobiological perspective, differ-

ences in pathway connectivity could reflect subtle

abnormalities in white matter tracts that reflect devel-

opmental alterations in axon number, axon pathfinding,

synaptogenesis and subsequent axon elimination.

Another instructive observation in this regard comes

from Joubert syndrome, in which there is physical dis-

connection and misrouting of normally crossed and asym-

metric sensorimotor systems, resulting in mis-wiring.

Although Joubert syndrome is rare, �25% of children

with the syndrome have autism [48] (J Gleeson et al.,
personal communication).
Current Opinion in Neurobiology 2007, 17:103–111
Intersection of the autisms with the
development of functional connectivity
Recent basic neurodevelopmental studies have defined

molecular mechanisms that regulate neuronal migration,

axon pathfinding, synapse construction and synapse

deconstruction, all of which contribute to the functional

and structural connectivity that underlies higher cogni-

tive functions. Perhaps most striking has been the dis-

covery that the molecular systems involved in this

complex process are plieotropic: the transcription factors,

cell adhesion molecules, extracellular matrix proteins,

axon guidance cues and neurotrophins that are involved

in the development of connectivity also participate in

other processes. In neurodevelopmental disorders, the

timing, location and degree to which gene expression

is disrupted dictate the emergent phenotype.

A scaffold of basic connectivity is established prenatally

in all mammalian species [14], with genetic mechanisms

governing the process. Although the genetic output can

be influenced greatly by features of the uterine environ-

ment (e.g. malnutrition, maternal stress, infections that

challenge the immune system, or exposure to toxins or

drugs of abuse), information from the outside world

(i.e. experience) that stimulates patterned electrophysio-

logical activity does not seem to be necessary for establish-

ing the initial architecture of sensory and motor systems.

However, spontaneous prenatal brain activity does

contribute to the appropriate wiring of circuits [14,49].

By contrast, postnatal development of the systems that

interpret extrinsic information to guide behavior depends

greatly on experience, which interacts with the genetic

network to build the fine details of interconnected circuits.
www.sciencedirect.com
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The hierarchical nature of the process of circuit formation

is particularly acute in relation to social behavior, verbal

communication and non-verbal communication, the devel-

opment of each depending greatly on the capacity of earlier

developing sensory, motor and internal homeostatic regu-

latory components [50]. Thus, the limits of the early-

developing parts of a system as determined by genetics

greatly influence the subsequent range of possibilities for

the development of connectivity and, eventually, the level

of function and degree of plasticity a particular circuit can

exhibit [49]. As we have already noted, disruption of this

developmental hierarchy at the level of disconnection

would target certain higher-order association systems, such

as those involved in joint attention previously mentioned.

It is striking, however, that the development of certain

pathways is spared, or even enhanced. This could occur by

selective disruption of both long-range connections (which

can be affected by changes in expression of axon guidance

molecules) and local connections in GABAergic circuits

(which serve as essential mediators of activity-dependent

maturation of cortical circuits) [51,52]. This selectivity

clearly does occur: cell-type-specific and regional disturb-

ances of long-range circuits (reviewed by [53]) and inter-

neuron development [54,55] have both been demonstrated

in genetic animal models. This re-emphasizes that the

vulnerability of certain systems might relate to the differ-

ential timing of circuit assembly in different cortical areas

[16]. Whereas the neuronal populations that comprise

primary sensory areas are generated over a longer period

of time prenatally than the populations of association

areas, connectivity of the association areas exhibits a

more extended maturation process. Thus, the suscepti-

bility to both very early and late perturbations might be

greater in these areas than in other cortical regions. In this

regard it is interesting that the left hemisphere in humans

takes longer to develop and is more influenced by

environmental factors than is the right hemisphere

[56]. In addition to these area-specific changes in

susceptibility over time, the heterogeneity in disruption

of the autisms is also likely to be affected by differential

expression patterns (both temporal and spatial) of genes

that have been linked to vulnerability.

Linking neurodevelopmental etiology and the
genetics of the autisms
Connecting the neurobiological components that build

and modify connectivity to the genetic etiologies of the

autisms remains a significant challenge, in part owing to

moderate-to-weak genetic associations, the likely invol-

vement of multiple genes, and the difficulties of replica-

tion in heterogeneous clinical populations [57]. It is

becoming clear that the genetics of idiopathic autisms

is complex, involving multigenic interactions and poten-

tially multiple, rare genetic variants, or mutations. In

addition, any specific genetic risk element is probably

related to specific impairments in aspects of cognition or

behavior such as social behavior [58], language [1,59] or
www.sciencedirect.com
repetitive behaviors [60], rather than to the traditional

clinical diagnosis of the autisms [6].

Despite the challenges that remain, there has been

progress. Analysis of non-syndromic cases in families in

which multiple children are affected have revealed rare

mutations that disrupt the genes encoding Neuroligin 3

and Neuroligin 4, which are implicated in basic mechan-

isms of synaptogenesis such as clustering of synaptic

glutamate receptors (see also review by Craig and Kang,

in this issue) [61]. Neuroligins interact with a family of

proteins called b-neurexins during synaptogenesis and

there is emerging evidence that rare variations in copy

number and common variations within the genes encod-

ing Neurexin 1 and Neurexin 3 contribute to ASD

susceptibility [62]. However, particular mutations in neu-

roligin genes can cause different phenotypes, including

autism and mental retardation without autism, within the

same family [63]. Similarly, in the Amish population,

mutations in the gene encoding contactin-associated

protein-like 2 (CNTNAP2), which has high homology to

the neurexin genes, can cause a rare neuronal migration

disorder that results in seizures, language delay, intellec-

tual disability and, in nearly two-thirds of patients, an

ASD [64]. Using data from the Autism Genetic Resource

Exchange (AGRE; http://www.agre.org/), we have ident-

ified a common variation in CNTNAP2 in a large cohort of

subjects who have idiopathic autism (M Alacron et al.,
unpublished data) demonstrating that this gene contrib-

utes to non-syndromic ASDs. A rare mutation of

SHANK3, which encodes a protein involved in dendritic

development, was also identified in a few patients who

have ASDs [65�]. Certain rare syndromic disorders in

which ASDs occur, such as Timothy syndrome, are

characterized by mutations in Ca2+ or other ion channels

that affect cell excitability and signaling cascades that

influence axon growth, synapse formation and dendritic

maturation (see also review by Krey and Dolmetsch, in

this issue). Dendritic structure is a key modulator of

synaptic function, and is one of the primary aspects of

the brain to be affected in Fragile X syndrome [66].

A variant in the 50 regulatory region of Reelin, which

encodes a protein that is essential for establishing the

subplate (a key transient structure involved in afferent

axonal patterning [67]) and for establishing basic laminar

organization of the cerebral cortex, exhibits a modest

association with ASDs in several studies [68–70], although

not in all reports (e.g. [71]).

These genetic findings in idiopathic ASDs and non-

syndromic mental retardation emphasize the overlap

between the autisms and more general disruption of brain

development, as is also suggested by the multitude of

syndromic causes of the autisms, including Fragile X

syndrome, Joubert syndrome and, rarely, Rett syndrome

[40]. These data suggest that a salient contribution from

stochastic events, such as the precise quantity and topology
Current Opinion in Neurobiology 2007, 17:103–111
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of neuronal migration deficits, or suboptimal function of

synapses on malformed dendrites, determine whether a

child will have mental retardation, severe autism or a

milder form of ASD such as Asperger syndrome or perva-

sive developmental disorder not otherwise specified

(PDD-NOS). In other words, which systems are function-

ally disconnected, and how severe and widespread the

disconnection is, will contribute to the ultimate phenotype.

In addition, primary involvement of the prefrontal cortex

and anterior cingulate gyrus are predicted to disrupt early

developing processes such as joint attention, which are

necessary antecedents to further development of language

and social cognition. Thus, there is an enormous role for

modulation of the salience of the social and other environ-

mental stimuli that will effect the development of these

systems.

Common risk alleles of autism candidate
genes that influence connectivity
To explore the contribution of genes that regulate con-

nectivity, Geschwind and colleagues performed an

association study on a single, large cohort in which

�35 genes are involved in axonal pathfinding and

neuronal migration [62]. This demonstrated conclusive

association of ASDs with the genes encoding Neurexins 1

and 3 (NRXN1 and NRXN3) and the GABA receptor b3

(GABRB3), and suggestive association with SLIT1 and

with an overall significant over-representation of single-

nucleotide polymorphisms (SNPs) in all of the genes that

comprise this functional grouping [62]. Furthermore,

strong and specific genetic evidence for the role of such

general biological events comes from association of

the hepatocyte growth factor (HGF) receptor proto-

oncogene MET [72��] with ASDs. MET tyrosine kinase

signaling participates in multiple aspects of neocortical

and cerebellar neuronal growth [73] and maturation,

particularly related to cortical interneuron development

[55,74,75] and pyramidal cell dendritic growth [76]. In

mice, hypomorphic expression states of MET and its

ligand HGF result in intermittent seizures, anxiety and

atypical social behavior [55,77]. On the basis of neuro-

biological data and location within a region of chromo-

some 7q31 that contains autism candidate genes, MET
was considered a viable candidate for genetic investi-

gation. Levitt and colleagues performed genetic associ-

ation analyses on an original family cohort and a large

replication group of families. The study [72��] documen-

ted a strong association of a common ‘C’ allele in the

promoter region of the MET gene in multiplex families

(those in which more than one child has autism). The ‘C’

variant causes a twofold decrease in MET promoter

activity and altered binding of specific transcription

factor complexes, implicating reduced MET gene

expression in autism susceptibility. The findings

represent the first connection of a genetic variant in

idiopathic autism with a potential functional alteration

at a molecular level. Given the pace of genetic discovery,
Current Opinion in Neurobiology 2007, 17:103–111
the identification of a more complete set of such variants

is likely to occur rapidly, providing a fertile ground

for neurobiological exploration in humans and model

systems.

Conclusions
Moving from genes to modeling the autisms in exper-

imental systems is challenging for several reasons. Here,

we have explored only a few key developmental issues.

First, the autisms are disorders in which complex infor-

mation processing might be disturbed at different levels

of development, introducing substantial heterogeneity.

Fundamental to this core feature of the hypothesis is the

detailed characterization of circuit development that is

hierarchical, progressing from first-order pathways to

complex higher-order connections [49,50]. Beyond tim-

ing issues, fundamental differences in the underlying

neurodevelopmental disruptions probably lead to the

heterogeneity in both symptoms and developmental

course that are characteristic of the ASDs. This is evident

in neurogenetic syndromes of known etiology, such as

Fragile X, Rett, Smith–Opitz–Lemi and Down syn-

dromes, in which there is a far greater prevalence of

ASD diagnosis than in the typical population. Yet the

cellular basis for dysfunctional circuits is poorly under-

stood in the autisms compared with the syndromic neu-

rogenetic disorders. This is due in large part to there

being limited neuropathological material available for

analysis, and the fact that structural imaging data across

childhood that provide clues regarding developmental

trajectory have been accumulated only recently. Lastly

if, as the evidence supports, the autisms are caused by

developmentally regulated disconnection of higher-order

association areas from one another and from other areas,

the circuitry will need to be better understood, and animal

studies will need to be interpreted in the context of

evolutionary differences in brain function, especially

when considering human specializations such as joint

attention and language. Although mouse models are a

powerful tool for exploring synaptic or cellular physi-

ology, ultrastructure and biochemistry, results from them

cannot yet be translated to the highly evolved level of

human behavior that relates to higher-order association

cortex [78]. Alterations in social behavior result from

distinct neural systems and environmental interactions

in different species; will asocial ants help us to understand

and develop treatments for the autisms? These issues

will require careful consideration as the genetic and

environmental contributions to the autisms are uncov-

ered and we attempt to understand their neurobiology.

As a final point of emphasis, resolving the genetic com-

ponents of the autisms more completely will provide an

essential substrate for shortening the long list of environ-

mental factors that have been hypothesized to cause or

contribute to the autisms. It will be most relevant to

examine susceptibility to such factors in the context of

known genetic vulnerability.
www.sciencedirect.com
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